Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,21 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
-
import gradio as gr
|
4 |
from pydub import AudioSegment
|
5 |
-
import
|
6 |
-
|
7 |
-
# Set device and precision for CPU
|
8 |
-
device = "cpu"
|
9 |
-
torch_dtype = torch.float32
|
10 |
-
|
11 |
-
# Load KB-Whisper model (Large variant)
|
12 |
-
model_id = "KBLab/kb-whisper-large"
|
13 |
-
|
14 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
15 |
-
model_id, torch_dtype=torch_dtype
|
16 |
-
).to(device)
|
17 |
-
|
18 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
19 |
-
|
20 |
-
pipe = pipeline(
|
21 |
-
"automatic-speech-recognition",
|
22 |
-
model=model,
|
23 |
-
tokenizer=processor.tokenizer,
|
24 |
-
feature_extractor=processor.feature_extractor,
|
25 |
-
device=device,
|
26 |
-
torch_dtype=torch_dtype,
|
27 |
-
)
|
28 |
|
29 |
def transcribe(audio_path):
|
30 |
-
# Handle m4a or other formats by converting to wav
|
31 |
-
base, ext = os.path.splitext(audio_path)
|
32 |
-
if ext.lower() != ".wav":
|
33 |
-
try:
|
34 |
-
sound = AudioSegment.from_file(audio_path)
|
35 |
-
audio_converted_path = base + ".converted.wav"
|
36 |
-
sound.export(audio_converted_path, format="wav")
|
37 |
-
audio_path = audio_converted_path
|
38 |
-
except Exception as e:
|
39 |
-
return f"Error converting audio: {str(e)}"
|
40 |
-
|
41 |
-
# Transcribe
|
42 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
result = pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
|
44 |
return result["text"]
|
|
|
45 |
except Exception as e:
|
46 |
-
return f"
|
47 |
-
|
48 |
-
# Build Gradio interface
|
49 |
-
gr.Interface(
|
50 |
-
fn=transcribe,
|
51 |
-
inputs=gr.Audio(type="filepath", label="Upload Swedish Audio"),
|
52 |
-
outputs=gr.Textbox(label="Transcribed Text"),
|
53 |
-
title="KB-Whisper Transcriber (Swedish, Free CPU)",
|
54 |
-
description="Upload .m4a, .mp3, or .wav files. Transcribes Swedish speech using KBLab's Whisper Large model.",
|
55 |
-
).launch()
|
|
|
|
|
|
|
|
|
1 |
from pydub import AudioSegment
|
2 |
+
import mimetypes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def transcribe(audio_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
try:
|
6 |
+
# Detect file type using MIME or extension
|
7 |
+
mime_type, _ = mimetypes.guess_type(audio_path)
|
8 |
+
ext = os.path.splitext(audio_path)[1].lower()
|
9 |
+
|
10 |
+
if mime_type == "audio/mp4" or ext == ".m4a":
|
11 |
+
print("Converting .m4a to .wav...")
|
12 |
+
sound = AudioSegment.from_file(audio_path, format="m4a")
|
13 |
+
converted_path = audio_path.replace(".m4a", ".converted.wav")
|
14 |
+
sound.export(converted_path, format="wav")
|
15 |
+
audio_path = converted_path
|
16 |
+
|
17 |
result = pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
|
18 |
return result["text"]
|
19 |
+
|
20 |
except Exception as e:
|
21 |
+
return f"Error during transcription: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|