Issamohammed commited on
Commit
0b63b29
·
verified ·
1 Parent(s): db55266

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -46
app.py CHANGED
@@ -1,59 +1,66 @@
1
  import os
2
  import torch
3
  import gradio as gr
4
- import mimetypes
5
  from pydub import AudioSegment
6
- from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
 
 
7
 
8
- # Set device and precision
 
 
 
 
9
  device = "cpu"
10
  torch_dtype = torch.float32
11
 
12
- # Load KB-Whisper model
13
  model_id = "KBLab/kb-whisper-large"
14
 
15
- model = AutoModelForSpeechSeq2Seq.from_pretrained(
16
- model_id, torch_dtype=torch_dtype
17
- ).to(device)
18
-
19
  processor = AutoProcessor.from_pretrained(model_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- pipe = pipeline(
22
- "automatic-speech-recognition",
23
- model=model,
24
- tokenizer=processor.tokenizer,
25
- feature_extractor=processor.feature_extractor,
26
- device=device,
27
- torch_dtype=torch_dtype,
28
- )
29
-
30
- def transcribe(audio_path):
31
- try:
32
- # Get file extension
33
- ext = os.path.splitext(audio_path)[1].lower()
34
-
35
- # Convert to WAV if not already
36
- if ext != ".wav":
37
- try:
38
- sound = AudioSegment.from_file(audio_path)
39
- converted_path = audio_path.replace(ext, ".converted.wav")
40
- sound.export(converted_path, format="wav")
41
- audio_path = converted_path
42
- except Exception as e:
43
- return f"Error converting audio to WAV: {str(e)}"
44
-
45
- # Transcribe
46
- result = pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
47
- return result["text"]
48
-
49
- except Exception as e:
50
- return f"Transcription failed: {str(e)}"
51
-
52
- # Gradio UI
53
  gr.Interface(
54
- fn=transcribe,
55
- inputs=gr.Audio(type="filepath", label="Upload Audio (.m4a, .mp3, .wav)"),
56
- outputs=gr.Textbox(label="Swedish Transcript"),
57
- title="Swedish Speech Transcriber with KB-Whisper",
58
- description="Supports .m4a, .mp3, .wav files. Transcribes spoken Swedish using KBLab's Whisper Large model. May take time on CPU.",
59
- ).launch()
 
 
1
  import os
2
  import torch
3
  import gradio as gr
 
4
  from pydub import AudioSegment
5
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
6
+ import tempfile
7
+ import math
8
 
9
+ from datasets import load_dataset, Audio
10
+ import numpy as np
11
+ import torchaudio
12
+
13
+ # Set up model
14
  device = "cpu"
15
  torch_dtype = torch.float32
16
 
 
17
  model_id = "KBLab/kb-whisper-large"
18
 
 
 
 
 
19
  processor = AutoProcessor.from_pretrained(model_id)
20
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
21
+
22
+ # Helper: Split audio into chunks
23
+ def split_audio(audio_path, chunk_duration_ms=10000):
24
+ audio = AudioSegment.from_file(audio_path)
25
+ chunks = [audio[i:i + chunk_duration_ms] for i in range(0, len(audio), chunk_duration_ms)]
26
+ return chunks
27
+
28
+ # Helper: Transcribe a single chunk
29
+ def transcribe_chunk(chunk):
30
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
31
+ chunk.export(tmpfile.name, format="wav")
32
+ input_audio, _ = torchaudio.load(tmpfile.name)
33
+ input_features = processor(input_audio.squeeze(), sampling_rate=16000, return_tensors="pt").input_features
34
+ input_features = input_features.to(device)
35
+ predicted_ids = model.generate(input_features, task="transcribe", language="sv")
36
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
37
+ os.remove(tmpfile.name)
38
+ return transcription
39
+
40
+ # Full transcription function with progress
41
+ def transcribe_with_progress(audio_path, progress=gr.Progress()):
42
+ ext = os.path.splitext(audio_path)[1].lower()
43
+ if ext != ".wav":
44
+ sound = AudioSegment.from_file(audio_path)
45
+ audio_path = audio_path.replace(ext, ".converted.wav")
46
+ sound.export(audio_path, format="wav")
47
+
48
+ chunks = split_audio(audio_path, chunk_duration_ms=8000)
49
+ full_transcript = ""
50
+ total_chunks = len(chunks)
51
+
52
+ for i, chunk in enumerate(chunks):
53
+ partial_text = transcribe_chunk(chunk)
54
+ full_transcript += partial_text + " "
55
+ progress(i + 1, total_chunks) # Update progress bar
56
+ yield full_transcript.strip() # Stream updated text to UI
57
 
58
+ # UI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  gr.Interface(
60
+ fn=transcribe_with_progress,
61
+ inputs=gr.Audio(type="filepath", label="Upload Swedish Audio"),
62
+ outputs=gr.Textbox(label="Live Transcript (Swedish)"),
63
+ title="Live Swedish Transcriber (KB-Whisper)",
64
+ description="Streams transcription word-by-word with visual progress. Supports .m4a, .mp3, .wav. May be slow on CPU.",
65
+ live=True
66
+ ).launch()