Israel Azoulay commited on
Commit
043007c
·
1 Parent(s): b5f700c

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ pretrained_effnetb2_feature_extractor_20_percent.pth filter=lfs diff=lfs merge=lfs -text
37
+ .pth filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import torch
4
+ from model import create_effnetb2_model
5
+ from timeit import default_timer as timer
6
+ from typing import Tuple, Dict
7
+
8
+
9
+ # Define the class names
10
+ class_names = ["pizza", "steak", "sushi"]
11
+
12
+ # Create the pretrained EffNetB2 model
13
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
14
+ num_classes=3,
15
+ )
16
+
17
+ # Load to the CPU the EffNetB2 model's saved weights
18
+ effnetb2.load_state_dict(
19
+ torch.load(
20
+ f="pretrained_effnetb2_feature_extractor_20_percent.pth",
21
+ map_location=torch.device("cpu"),
22
+ )
23
+ )
24
+
25
+
26
+ def predict(img) -> Tuple[Dict, float]:
27
+ """This function transforms and performs a prediction on an image, and returns
28
+ the prediction and time taken.
29
+
30
+ Returns: the prediction dictionary and prediction time.
31
+ """
32
+ # Begin the prediction's timer
33
+ start_time = timer()
34
+
35
+ # Transform the target image with the pretrained EffNetB2 model's transforms, and add a batch dimension
36
+ img = effnetb2_transforms(img).unsqueeze(0)
37
+
38
+ # Set the model to evaluation model
39
+ effnetb2.eval()
40
+
41
+ # Activate the inference mode
42
+ with torch.inference_mode():
43
+ # Pass the transformed image through the model, and transform the prediction logits (the model's outputs) into prediction probabilities
44
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
45
+
46
+ # Create a prediction label and prediction probability dictionary for each prediction class
47
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
48
+
49
+ # Calculating the prediction's time
50
+ pred_time = round(timer() - start_time, 5)
51
+
52
+ return pred_labels_and_probs, pred_time
53
+
54
+
55
+ # Define the title
56
+ title = "DishVision - Multi Class Food Image Classifier"
57
+ # Define the description
58
+ description = "An EfficientNetB2-based transfer learning model for feature extraction in computer vision, designed to classify images into three distinct food categories."
59
+ # Define the article
60
+ article = "Computer Vision Project"
61
+
62
+ # Create the "examples" list from "examples/" directory
63
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
64
+
65
+ # Create the Gradio deom interface
66
+ demo = gr.Interface(fn=predict,
67
+ inputs=gr.Image(type="pil"),
68
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"),
69
+ gr.Number(label="Prediction time (s)")],
70
+ examples=example_list,
71
+ title=title,
72
+ description=description,
73
+ article=article)
74
+
75
+ demo.launch(share=True)
examples/2582289.jpg ADDED
examples/3622237.jpg ADDED
examples/592799.jpg ADDED
model.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+ from torch import nn
4
+
5
+
6
+ def create_effnetb2_model(num_classes:int=3,
7
+ seed:int=42):
8
+ """This function creates an EfficientNetB2 feature extractor model and transforms.
9
+
10
+ Args:
11
+ num_classes (int, optional): number of classes in the classifier head.
12
+ Defaults to 3.
13
+ seed (int, optional): random seed value. Defaults to 42.
14
+
15
+ Returns:
16
+ model (torch.nn.Module): EffNetB2 feature extractor model.
17
+ transforms (torchvision.transforms): EffNetB2 image transforms.
18
+ """
19
+ # Get the pretrained 'efficientnet_b2' model's weights
20
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
21
+ # Get the pretrained 'efficientnet_b2' model's transforms
22
+ transforms = weights.transforms()
23
+ # Set up the pretrained 'efficientnet_b2' model
24
+ model = torchvision.models.efficientnet_b2(weights=weights)
25
+
26
+ # Freeze the base layers in the 'efficientnet_b2' model (for Feature Extraction)
27
+ for param in model.parameters():
28
+ param.requires_grad = False
29
+
30
+ # Set the torch manual seed
31
+ torch.manual_seed(seed)
32
+
33
+ # Update the classifier head to suit to our problem
34
+ model.classifier = nn.Sequential(
35
+ nn.Dropout(p=0.3, inplace=True),
36
+ nn.Linear(in_features=1408, out_features=num_classes),
37
+ )
38
+
39
+ return model, transforms
pretrained_effnetb2_feature_extractor_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a14a8d707956ac7a4ced4ee884df9c92850795ea18ac3b5d41c3c34dbc614253
3
+ size 31298682
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch==2.0.1
2
+ torchvision==0.15.2
3
+ gradio==4.38.1
4
+ numpy<2.0.0