Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image, ImageDraw
|
| 3 |
+
|
| 4 |
+
# Use a pipeline as a high-level helper
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# model_path = ("../models/models--facebook--detr-resnet-50/snapshots/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")
|
| 9 |
+
|
| 10 |
+
# object_detector = pipeline("object-detection", model=model_path)
|
| 11 |
+
|
| 12 |
+
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# raw_image = Image .open("../Files/child dog ball.jpg")
|
| 17 |
+
# output = object_detector(raw_image)
|
| 18 |
+
# print(output)
|
| 19 |
+
|
| 20 |
+
def draw_bounding_boxes(image, detections):
|
| 21 |
+
"""
|
| 22 |
+
Draws bounding boxes around detected objects on the image.
|
| 23 |
+
|
| 24 |
+
Parameters:
|
| 25 |
+
image (PIL.Image): The input image.
|
| 26 |
+
detections (list): A list of dictionaries containing detection results.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
PIL.Image: The image with bounding boxes drawn around detected objects.
|
| 30 |
+
"""
|
| 31 |
+
# Create an ImageDraw object to draw on the image
|
| 32 |
+
draw = ImageDraw.Draw(image)
|
| 33 |
+
|
| 34 |
+
# Iterate over each detected object
|
| 35 |
+
for detection in detections:
|
| 36 |
+
box = detection['box']
|
| 37 |
+
label = detection['label']
|
| 38 |
+
score = detection['score']
|
| 39 |
+
|
| 40 |
+
# Define the coordinates of the bounding box
|
| 41 |
+
xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax']
|
| 42 |
+
|
| 43 |
+
# Draw the bounding box on the image
|
| 44 |
+
draw.rectangle([xmin, ymin, xmax, ymax], outline="red", width=2)
|
| 45 |
+
|
| 46 |
+
# Draw the label and score on the image
|
| 47 |
+
text = f"{label} ({score:.2f})"
|
| 48 |
+
draw.text((xmin, ymin - 10), text, fill="red")
|
| 49 |
+
|
| 50 |
+
return image
|
| 51 |
+
#raw_image = Image .open("image")
|
| 52 |
+
def detect_object(image):
|
| 53 |
+
raw_image = image
|
| 54 |
+
output = object_detector(raw_image)
|
| 55 |
+
processed_image = draw_bounding_boxes(raw_image, output)
|
| 56 |
+
return processed_image
|
| 57 |
+
|
| 58 |
+
# print(output)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
gr.close_all()
|
| 62 |
+
|
| 63 |
+
# Create the Gradio interface
|
| 64 |
+
demo = gr.Interface(
|
| 65 |
+
fn=detect_object,
|
| 66 |
+
inputs=gr.Image(label="Select an Image", type="pil"),
|
| 67 |
+
outputs=gr.Image(label="Processed Image", type="pil"),
|
| 68 |
+
title="GenAI Project 6: Object Detector",
|
| 69 |
+
description="THIS APPLICATION WILL BE USED TO DETECT OBJECTS IN THE PROVIDED INPUT"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Launch the Gradio interface
|
| 73 |
+
demo.launch()
|