|
import librosa |
|
import librosa.filters |
|
import numpy as np |
|
|
|
|
|
from scipy import signal |
|
from scipy.io import wavfile |
|
|
|
hp_num_mels = 80 |
|
hp_rescale = True |
|
hp_rescaling_max = 0.9 |
|
hp_use_lws = False |
|
hp_n_fft = 800 |
|
hp_hop_size = 200 |
|
hp_win_size = 800 |
|
hp_sample_rate = 16000 |
|
hp_frame_shift_ms = None |
|
hp_signal_normalization = True |
|
hp_allow_clipping_in_normalization = True |
|
hp_symmetric_mels = True |
|
hp_max_abs_value = 4.0 |
|
hp_preemphasize = True |
|
hp_preemphasis = 0.97 |
|
hp_min_level_db = -100 |
|
hp_ref_level_db = 20 |
|
hp_fmin = 55 |
|
hp_fmax = 7600 |
|
|
|
|
|
def load_wav(path, sr): |
|
return librosa.core.load(path, sr=sr)[0] |
|
|
|
|
|
def save_wav(wav, path, sr): |
|
wav *= 32767 / max(0.01, np.max(np.abs(wav))) |
|
|
|
wavfile.write(path, sr, wav.astype(np.int16)) |
|
|
|
|
|
def save_wavenet_wav(wav, path, sr): |
|
librosa.output.write_wav(path, wav, sr=sr) |
|
|
|
|
|
def preemphasis(wav, k, preemphasize=True): |
|
if preemphasize: |
|
return signal.lfilter([1, -k], [1], wav) |
|
return wav |
|
|
|
|
|
def inv_preemphasis(wav, k, inv_preemphasize=True): |
|
if inv_preemphasize: |
|
return signal.lfilter([1], [1, -k], wav) |
|
return wav |
|
|
|
|
|
def get_hop_size(): |
|
hop_size = hp_hop_size |
|
if hop_size is None: |
|
assert hp_frame_shift_ms is not None |
|
hop_size = int(hp_frame_shift_ms / 1000 * hp_sample_rate) |
|
return hop_size |
|
|
|
|
|
def linearspectrogram(wav): |
|
D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize)) |
|
S = _amp_to_db(np.abs(D)) - hp_ref_level_db |
|
if hp_signal_normalization: |
|
return _normalize(S) |
|
return S |
|
|
|
|
|
def melspectrogram(wav): |
|
D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize)) |
|
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp_ref_level_db |
|
if hp_signal_normalization: |
|
return _normalize(S) |
|
return S |
|
|
|
|
|
def _lws_processor(): |
|
import lws |
|
|
|
return lws.lws(hp_n_fft, get_hop_size(), fftsize=hp_win_size, mode="speech") |
|
|
|
|
|
def _stft(y): |
|
if hp_use_lws: |
|
return _lws_processor(hp).stft(y).T |
|
else: |
|
return librosa.stft(y=y, n_fft=hp_n_fft, hop_length=get_hop_size(), win_length=hp_win_size) |
|
|
|
|
|
|
|
|
|
def num_frames(length, fsize, fshift): |
|
"""Compute number of time frames of spectrogram""" |
|
pad = fsize - fshift |
|
if length % fshift == 0: |
|
M = (length + pad * 2 - fsize) // fshift + 1 |
|
else: |
|
M = (length + pad * 2 - fsize) // fshift + 2 |
|
return M |
|
|
|
|
|
def pad_lr(x, fsize, fshift): |
|
"""Compute left and right padding""" |
|
M = num_frames(len(x), fsize, fshift) |
|
pad = fsize - fshift |
|
T = len(x) + 2 * pad |
|
r = (M - 1) * fshift + fsize - T |
|
return pad, pad + r |
|
|
|
|
|
|
|
|
|
def librosa_pad_lr(x, fsize, fshift): |
|
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] |
|
|
|
|
|
|
|
_mel_basis = None |
|
|
|
|
|
def _linear_to_mel(spectogram): |
|
global _mel_basis |
|
if _mel_basis is None: |
|
_mel_basis = _build_mel_basis() |
|
return np.dot(_mel_basis, spectogram) |
|
|
|
|
|
def _build_mel_basis(): |
|
assert hp_fmax <= hp_sample_rate // 2 |
|
return librosa.filters.mel(hp_sample_rate, hp_n_fft, n_mels=hp_num_mels, fmin=hp_fmin, fmax=hp_fmax) |
|
|
|
|
|
def _amp_to_db(x): |
|
min_level = np.exp(hp_min_level_db / 20 * np.log(10)) |
|
return 20 * np.log10(np.maximum(min_level, x)) |
|
|
|
|
|
def _normalize(S): |
|
if hp_allow_clipping_in_normalization: |
|
if hp_symmetric_mels: |
|
return np.clip( |
|
(2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value, |
|
-hp_max_abs_value, |
|
hp_max_abs_value, |
|
) |
|
else: |
|
return np.clip( |
|
hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db)), |
|
0, |
|
hp_max_abs_value, |
|
) |
|
|
|
assert S.max() <= 0 and S.min() - hp_min_level_db >= 0 |
|
if hp_symmetric_mels: |
|
return (2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value |
|
else: |
|
return hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db)) |
|
|