|
from typing import List, Union |
|
|
|
import torch |
|
import streamlit as st |
|
import numpy as np |
|
from numpy import ndarray |
|
from transformers import (AlbertModel, AlbertTokenizer, BertModel, |
|
BertTokenizer, DistilBertModel, DistilBertTokenizer, |
|
PreTrainedModel, PreTrainedTokenizer, XLMModel, |
|
XLMTokenizer, XLNetModel, XLNetTokenizer) |
|
|
|
@st.cache() |
|
def load_hf_model(base_model, model_name, device): |
|
model = base_model.from_pretrained(model_name, output_hidden_states=True).to(device) |
|
return model |
|
|
|
class BertParent(object): |
|
""" |
|
Base handler for BERT models. |
|
""" |
|
|
|
MODELS = { |
|
'bert-base-uncased': (BertModel, BertTokenizer), |
|
'bert-large-uncased': (BertModel, BertTokenizer), |
|
'xlnet-base-cased': (XLNetModel, XLNetTokenizer), |
|
'xlm-mlm-enfr-1024': (XLMModel, XLMTokenizer), |
|
'distilbert-base-uncased': (DistilBertModel, DistilBertTokenizer), |
|
'albert-base-v1': (AlbertModel, AlbertTokenizer), |
|
'albert-large-v1': (AlbertModel, AlbertTokenizer) |
|
} |
|
|
|
def __init__( |
|
self, |
|
model: str, |
|
custom_model: PreTrainedModel = None, |
|
custom_tokenizer: PreTrainedTokenizer = None, |
|
gpu_id: int = 0, |
|
): |
|
""" |
|
:param model: Model is the string path for the bert weights. If given a keyword, the s3 path will be used. |
|
:param custom_model: This is optional if a custom bert model is used. |
|
:param custom_tokenizer: Place to use custom tokenizer. |
|
""" |
|
base_model, base_tokenizer = self.MODELS.get(model, (None, None)) |
|
|
|
self.device = torch.device("cpu") |
|
if torch.cuda.is_available(): |
|
assert ( |
|
isinstance(gpu_id, int) and (0 <= gpu_id and gpu_id < torch.cuda.device_count()) |
|
), f"`gpu_id` must be an integer between 0 to {torch.cuda.device_count() - 1}. But got: {gpu_id}" |
|
|
|
self.device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if custom_model: |
|
self.model = custom_model.to(self.device) |
|
else: |
|
|
|
|
|
self.model = load_hf_model(base_model, model, self.device) |
|
|
|
if custom_tokenizer: |
|
self.tokenizer = custom_tokenizer |
|
else: |
|
self.tokenizer = base_tokenizer.from_pretrained(model) |
|
|
|
self.model.eval() |
|
|
|
|
|
def tokenize_input(self, text: str) -> torch.tensor: |
|
""" |
|
Tokenizes the text input. |
|
:param text: Text to tokenize. |
|
:return: Returns a torch tensor. |
|
""" |
|
tokenized_text = self.tokenizer.tokenize(text) |
|
indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokenized_text) |
|
return torch.tensor([indexed_tokens]).to(self.device) |
|
|
|
def _pooled_handler(self, hidden: torch.Tensor, |
|
reduce_option: str) -> torch.Tensor: |
|
""" |
|
Handles torch tensor. |
|
:param hidden: The hidden torch tensor to process. |
|
:param reduce_option: The reduce option to use, such as mean, etc. |
|
:return: Returns a torch tensor. |
|
""" |
|
|
|
if reduce_option == 'max': |
|
return hidden.max(dim=1)[0].squeeze() |
|
|
|
elif reduce_option == 'median': |
|
return hidden.median(dim=1)[0].squeeze() |
|
|
|
return hidden.mean(dim=1).squeeze() |
|
|
|
def extract_embeddings( |
|
self, |
|
text: str, |
|
hidden: Union[List[int], int] = -2, |
|
reduce_option: str = 'mean', |
|
hidden_concat: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Extracts the embeddings for the given text. |
|
:param text: The text to extract embeddings for. |
|
:param hidden: The hidden layer(s) to use for a readout handler. |
|
:param squeeze: If we should squeeze the outputs (required for some layers). |
|
:param reduce_option: How we should reduce the items. |
|
:param hidden_concat: Whether or not to concat multiple hidden layers. |
|
:return: A torch vector. |
|
""" |
|
tokens_tensor = self.tokenize_input(text) |
|
pooled, hidden_states = self.model(tokens_tensor)[-2:] |
|
|
|
|
|
if reduce_option == 'concat_last_4': |
|
last_4 = [hidden_states[i] for i in (-1, -2, -3, -4)] |
|
cat_hidden_states = torch.cat(tuple(last_4), dim=-1) |
|
return torch.mean(cat_hidden_states, dim=1).squeeze() |
|
|
|
elif reduce_option == 'reduce_last_4': |
|
last_4 = [hidden_states[i] for i in (-1, -2, -3, -4)] |
|
return torch.cat(tuple(last_4), dim=1).mean(axis=1).squeeze() |
|
|
|
elif type(hidden) == int: |
|
hidden_s = hidden_states[hidden] |
|
return self._pooled_handler(hidden_s, reduce_option) |
|
|
|
elif hidden_concat: |
|
last_states = [hidden_states[i] for i in hidden] |
|
cat_hidden_states = torch.cat(tuple(last_states), dim=-1) |
|
return torch.mean(cat_hidden_states, dim=1).squeeze() |
|
|
|
last_states = [hidden_states[i] for i in hidden] |
|
hidden_s = torch.cat(tuple(last_states), dim=1) |
|
|
|
return self._pooled_handler(hidden_s, reduce_option) |
|
|
|
def create_matrix( |
|
self, |
|
content: List[str], |
|
hidden: Union[List[int], int] = -2, |
|
reduce_option: str = 'mean', |
|
hidden_concat: bool = False, |
|
) -> ndarray: |
|
""" |
|
Create matrix from the embeddings. |
|
:param content: The list of sentences. |
|
:param hidden: Which hidden layer to use. |
|
:param reduce_option: The reduce option to run. |
|
:param hidden_concat: Whether or not to concat multiple hidden layers. |
|
:return: A numpy array matrix of the given content. |
|
""" |
|
|
|
return np.asarray([ |
|
np.squeeze(self.extract_embeddings( |
|
t, hidden=hidden, reduce_option=reduce_option, hidden_concat=hidden_concat |
|
).data.cpu().numpy()) for t in content |
|
]) |
|
|
|
def __call__( |
|
self, |
|
content: List[str], |
|
hidden: int = -2, |
|
reduce_option: str = 'mean', |
|
hidden_concat: bool = False, |
|
) -> ndarray: |
|
""" |
|
Create matrix from the embeddings. |
|
:param content: The list of sentences. |
|
:param hidden: Which hidden layer to use. |
|
:param reduce_option: The reduce option to run. |
|
:param hidden_concat: Whether or not to concat multiple hidden layers. |
|
:return: A numpy array matrix of the given content. |
|
""" |
|
return self.create_matrix(content, hidden, reduce_option, hidden_concat) |