|
import torch |
|
import numpy as np |
|
from scipy.io.wavfile import write |
|
|
|
from audio.audio_processing import griffin_lim |
|
|
|
|
|
def get_mel_from_wav(audio, _stft): |
|
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1) |
|
audio = torch.autograd.Variable(audio, requires_grad=False) |
|
melspec, energy = _stft.mel_spectrogram(audio) |
|
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32) |
|
energy = torch.squeeze(energy, 0).numpy().astype(np.float32) |
|
|
|
return melspec, energy |
|
|
|
|
|
def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60): |
|
mel = torch.stack([mel]) |
|
mel_decompress = _stft.spectral_de_normalize(mel) |
|
mel_decompress = mel_decompress.transpose(1, 2).data.cpu() |
|
spec_from_mel_scaling = 1000 |
|
spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis) |
|
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0) |
|
spec_from_mel = spec_from_mel * spec_from_mel_scaling |
|
|
|
audio = griffin_lim( |
|
torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters |
|
) |
|
|
|
audio = audio.squeeze() |
|
audio = audio.cpu().numpy() |
|
audio_path = out_filename |
|
write(audio_path, _stft.sampling_rate, audio) |
|
|