Emotion_Aware_TTS / preprocessor /preprocessor.py
Ionut-Bostan's picture
Upload 82 files
feec0bf
raw
history blame
11.6 kB
import os
import random
import json
import tgt
import librosa
import numpy as np
import pyworld as pw
from scipy.interpolate import interp1d
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
import audio as Audio
class Preprocessor:
def __init__(self, config):
self.config = config
self.emo_dir = config["path"]["emo_path"]
self.in_dir = config["path"]["raw_path"]
self.out_dir = config["path"]["preprocessed_path"]
self.val_size = config["preprocessing"]["val_size"]
self.sampling_rate = config["preprocessing"]["audio"]["sampling_rate"]
self.hop_length = config["preprocessing"]["stft"]["hop_length"]
assert config["preprocessing"]["pitch"]["feature"] in [
"phoneme_level",
"frame_level",
]
assert config["preprocessing"]["energy"]["feature"] in [
"phoneme_level",
"frame_level",
]
self.pitch_phoneme_averaging = (
config["preprocessing"]["pitch"]["feature"] == "phoneme_level"
)
self.energy_phoneme_averaging = (
config["preprocessing"]["energy"]["feature"] == "phoneme_level"
)
self.pitch_normalization = config["preprocessing"]["pitch"]["normalization"]
self.energy_normalization = config["preprocessing"]["energy"]["normalization"]
self.STFT = Audio.stft.TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
def build_from_path(self):
os.makedirs((os.path.join(self.out_dir, "mel")), exist_ok=True)
os.makedirs((os.path.join(self.out_dir, "pitch")), exist_ok=True)
os.makedirs((os.path.join(self.out_dir, "energy")), exist_ok=True)
os.makedirs((os.path.join(self.out_dir, "duration")), exist_ok=True)
print("Processing Data ...")
out = list()
n_frames = 0
pitch_scaler = StandardScaler()
energy_scaler = StandardScaler()
# add emotion dictionary
emotions = {}
with open(os.path.join(self.emo_dir), "r", encoding='utf-8') as f:
i = 0
for line in f:
emotion = line.strip().split(None, 1)
emotions[emotion[0]] = i
i += 1
# Compute pitch, energy, duration, and mel-spectrogram
speakers = {}
for i, speaker in enumerate(tqdm(os.listdir(self.in_dir))):
speakers[speaker] = i
for wav_name in os.listdir(os.path.join(self.in_dir, speaker)):
if ".wav" not in wav_name:
continue
basename = wav_name.split(".")[0]
tg_path = os.path.join(
self.out_dir, "TextGrid", speaker, "{}.TextGrid".format(
basename)
)
if os.path.exists(tg_path):
ret = self.process_utterance(speaker, basename)
if ret is None:
continue
else:
info, pitch, energy, n = ret
out.append(info)
if len(pitch) > 0:
pitch_scaler.partial_fit(pitch.reshape((-1, 1)))
if len(energy) > 0:
energy_scaler.partial_fit(energy.reshape((-1, 1)))
n_frames += n
print("Computing statistic quantities ...")
# Perform normalization if necessary
if self.pitch_normalization:
pitch_mean = pitch_scaler.mean_[0]
pitch_std = pitch_scaler.scale_[0]
else:
# A numerical trick to avoid normalization...
pitch_mean = 0
pitch_std = 1
if self.energy_normalization:
energy_mean = energy_scaler.mean_[0]
energy_std = energy_scaler.scale_[0]
else:
energy_mean = 0
energy_std = 1
pitch_min, pitch_max = self.normalize(
os.path.join(self.out_dir, "pitch"), pitch_mean, pitch_std
)
energy_min, energy_max = self.normalize(
os.path.join(self.out_dir, "energy"), energy_mean, energy_std
)
# Save files
with open(os.path.join(self.out_dir, "speakers.json"), "w") as f:
f.write(json.dumps(speakers))
# Save emotions in a json file
with open(os.path.join(self.out_dir, "emotions.json"), "w") as f:
f.write(json.dumps(emotions))
with open(os.path.join(self.out_dir, "stats.json"), "w") as f:
stats = {
"pitch": [
float(pitch_min),
float(pitch_max),
float(pitch_mean),
float(pitch_std),
],
"energy": [
float(energy_min),
float(energy_max),
float(energy_mean),
float(energy_std),
],
}
f.write(json.dumps(stats))
print(
"Total time: {} hours".format(
n_frames * self.hop_length / self.sampling_rate / 3600
)
)
random.shuffle(out)
out = [r for r in out if r is not None]
# Write metadata
with open(os.path.join(self.out_dir, "train.txt"), "w", encoding="utf-8") as f:
for m in out[self.val_size:]:
f.write(m + "\n")
with open(os.path.join(self.out_dir, "val.txt"), "w", encoding="utf-8") as f:
for m in out[: self.val_size]:
f.write(m + "\n")
return out
def process_utterance(self, speaker, basename):
wav_path = os.path.join(self.in_dir, speaker,
"{}.wav".format(basename))
text_path = os.path.join(self.in_dir, speaker,
"{}.lab".format(basename))
tg_path = os.path.join(
self.out_dir, "TextGrid", speaker, "{}.TextGrid".format(basename)
)
# Get alignments
textgrid = tgt.io.read_textgrid(tg_path)
phone, duration, start, end = self.get_alignment(
textgrid.get_tier_by_name("phones")
)
text = "{" + " ".join(phone) + "}"
if start >= end:
return None
# Read and trim wav files
wav, _ = librosa.load(wav_path)
wav = wav[
int(self.sampling_rate * start): int(self.sampling_rate * end)
].astype(np.float32)
# Read raw text
with open(text_path, "r") as f:
raw_text = f.readline().strip("\n")
# Compute fundamental frequency
pitch, t = pw.dio(
wav.astype(np.float64),
self.sampling_rate,
frame_period=self.hop_length / self.sampling_rate * 1000,
)
pitch = pw.stonemask(wav.astype(np.float64),
pitch, t, self.sampling_rate)
pitch = pitch[: sum(duration)]
if np.sum(pitch != 0) <= 1:
return None
# Compute mel-scale spectrogram and energy
mel_spectrogram, energy = Audio.tools.get_mel_from_wav(wav, self.STFT)
mel_spectrogram = mel_spectrogram[:, : sum(duration)]
energy = energy[: sum(duration)]
if self.pitch_phoneme_averaging:
# perform linear interpolation
nonzero_ids = np.where(pitch != 0)[0]
interp_fn = interp1d(
nonzero_ids,
pitch[nonzero_ids],
fill_value=(pitch[nonzero_ids[0]], pitch[nonzero_ids[-1]]),
bounds_error=False,
)
pitch = interp_fn(np.arange(0, len(pitch)))
# Phoneme-level average
pos = 0
for i, d in enumerate(duration):
if d > 0:
pitch[i] = np.mean(pitch[pos: pos + d])
else:
pitch[i] = 0
pos += d
pitch = pitch[: len(duration)]
if self.energy_phoneme_averaging:
# Phoneme-level average
pos = 0
for i, d in enumerate(duration):
if d > 0:
energy[i] = np.mean(energy[pos: pos + d])
else:
energy[i] = 0
pos += d
energy = energy[: len(duration)]
# Save files
dur_filename = "{}-duration-{}.npy".format(speaker, basename)
np.save(os.path.join(self.out_dir, "duration", dur_filename), duration)
pitch_filename = "{}-pitch-{}.npy".format(speaker, basename)
np.save(os.path.join(self.out_dir, "pitch", pitch_filename), pitch)
energy_filename = "{}-energy-{}.npy".format(speaker, basename)
np.save(os.path.join(self.out_dir, "energy", energy_filename), energy)
mel_filename = "{}-mel-{}.npy".format(speaker, basename)
np.save(
os.path.join(self.out_dir, "mel", mel_filename),
mel_spectrogram.T,
)
return (
"|".join([basename, speaker, text,
raw_text, basename.split('_')[0].lower()]),
self.remove_outlier(pitch),
self.remove_outlier(energy),
mel_spectrogram.shape[1],
)
def get_alignment(self, tier):
sil_phones = ["sil", "sp", "spn"]
phones = []
durations = []
start_time = 0
end_time = 0
end_idx = 0
for t in tier._objects:
s, e, p = t.start_time, t.end_time, t.text
# Trim leading silences
if phones == []:
if p in sil_phones:
continue
else:
start_time = s
if p not in sil_phones:
# For ordinary phones
phones.append(p)
end_time = e
end_idx = len(phones)
else:
# For silent phones
phones.append(p)
durations.append(
int(
np.round(e * self.sampling_rate / self.hop_length)
- np.round(s * self.sampling_rate / self.hop_length)
)
)
# Trim tailing silences
phones = phones[:end_idx]
durations = durations[:end_idx]
return phones, durations, start_time, end_time
def remove_outlier(self, values):
values = np.array(values)
p25 = np.percentile(values, 25)
p75 = np.percentile(values, 75)
lower = p25 - 1.5 * (p75 - p25)
upper = p75 + 1.5 * (p75 - p25)
normal_indices = np.logical_and(values > lower, values < upper)
return values[normal_indices]
def normalize(self, in_dir, mean, std):
max_value = np.finfo(np.float64).min
min_value = np.finfo(np.float64).max
for filename in os.listdir(in_dir):
filename = os.path.join(in_dir, filename)
values = (np.load(filename) - mean) / std
np.save(filename, values)
max_value = max(max_value, max(values))
min_value = min(min_value, min(values))
return min_value, max_value