Ionut-Bostan's picture
Upload 82 files
feec0bf
raw
history blame
5.82 kB
import torch
import torch.nn as nn
import numpy as np
import transformer.Constants as Constants
from .Layers import FFTBlock
from text.symbols import symbols
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
""" Sinusoid position encoding table """
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
sinusoid_table = np.array(
[get_posi_angle_vec(pos_i) for pos_i in range(n_position)]
)
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if padding_idx is not None:
# zero vector for padding dimension
sinusoid_table[padding_idx] = 0.0
return torch.FloatTensor(sinusoid_table)
class Encoder(nn.Module):
""" Encoder """
def __init__(self, config):
super(Encoder, self).__init__()
n_position = config["max_seq_len"] + 1
n_src_vocab = len(symbols) + 1
d_word_vec = config["transformer"]["encoder_hidden"]
n_layers = config["transformer"]["encoder_layer"]
n_head = config["transformer"]["encoder_head"]
d_k = d_v = (
config["transformer"]["encoder_hidden"]
// config["transformer"]["encoder_head"]
)
d_model = config["transformer"]["encoder_hidden"]
d_inner = config["transformer"]["conv_filter_size"]
kernel_size = config["transformer"]["conv_kernel_size"]
dropout = config["transformer"]["encoder_dropout"]
self.max_seq_len = config["max_seq_len"]
self.d_model = d_model
self.src_word_emb = nn.Embedding(
n_src_vocab, d_word_vec, padding_idx=Constants.PAD
)
self.position_enc = nn.Parameter(
get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0),
requires_grad=False,
)
self.layer_stack = nn.ModuleList(
[
FFTBlock(
d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=dropout
)
for _ in range(n_layers)
]
)
def forward(self, src_seq, mask, return_attns=False):
enc_slf_attn_list = []
batch_size, max_len = src_seq.shape[0], src_seq.shape[1]
# -- Prepare masks
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1)
# -- Forward
if not self.training and src_seq.shape[1] > self.max_seq_len:
enc_output = self.src_word_emb(src_seq) + get_sinusoid_encoding_table(
src_seq.shape[1], self.d_model
)[: src_seq.shape[1], :].unsqueeze(0).expand(batch_size, -1, -1).to(
src_seq.device
)
else:
enc_output = self.src_word_emb(src_seq) + self.position_enc[
:, :max_len, :
].expand(batch_size, -1, -1)
for enc_layer in self.layer_stack:
enc_output, enc_slf_attn = enc_layer(
enc_output, mask=mask, slf_attn_mask=slf_attn_mask
)
if return_attns:
enc_slf_attn_list += [enc_slf_attn]
return enc_output
class Decoder(nn.Module):
""" Decoder """
def __init__(self, config):
super(Decoder, self).__init__()
n_position = config["max_seq_len"] + 1
d_word_vec = config["transformer"]["decoder_hidden"]
n_layers = config["transformer"]["decoder_layer"]
n_head = config["transformer"]["decoder_head"]
d_k = d_v = (
config["transformer"]["decoder_hidden"]
// config["transformer"]["decoder_head"]
)
d_model = config["transformer"]["decoder_hidden"]
d_inner = config["transformer"]["conv_filter_size"]
kernel_size = config["transformer"]["conv_kernel_size"]
dropout = config["transformer"]["decoder_dropout"]
self.max_seq_len = config["max_seq_len"]
self.d_model = d_model
self.position_enc = nn.Parameter(
get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0),
requires_grad=False,
)
self.layer_stack = nn.ModuleList(
[
FFTBlock(
d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=dropout
)
for _ in range(n_layers)
]
)
def forward(self, enc_seq, mask, return_attns=False):
dec_slf_attn_list = []
batch_size, max_len = enc_seq.shape[0], enc_seq.shape[1]
# -- Forward
if not self.training and enc_seq.shape[1] > self.max_seq_len:
# -- Prepare masks
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1)
dec_output = enc_seq + get_sinusoid_encoding_table(
enc_seq.shape[1], self.d_model
)[: enc_seq.shape[1], :].unsqueeze(0).expand(batch_size, -1, -1).to(
enc_seq.device
)
else:
max_len = min(max_len, self.max_seq_len)
# -- Prepare masks
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1)
dec_output = enc_seq[:, :max_len, :] + self.position_enc[
:, :max_len, :
].expand(batch_size, -1, -1)
mask = mask[:, :max_len]
slf_attn_mask = slf_attn_mask[:, :, :max_len]
for dec_layer in self.layer_stack:
dec_output, dec_slf_attn = dec_layer(
dec_output, mask=mask, slf_attn_mask=slf_attn_mask
)
if return_attns:
dec_slf_attn_list += [dec_slf_attn]
return dec_output, mask