|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
|
|
import transformer.Constants as Constants |
|
from .Layers import FFTBlock |
|
from text.symbols import symbols |
|
|
|
|
|
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): |
|
""" Sinusoid position encoding table """ |
|
|
|
def cal_angle(position, hid_idx): |
|
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) |
|
|
|
def get_posi_angle_vec(position): |
|
return [cal_angle(position, hid_j) for hid_j in range(d_hid)] |
|
|
|
sinusoid_table = np.array( |
|
[get_posi_angle_vec(pos_i) for pos_i in range(n_position)] |
|
) |
|
|
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
|
|
if padding_idx is not None: |
|
|
|
sinusoid_table[padding_idx] = 0.0 |
|
|
|
return torch.FloatTensor(sinusoid_table) |
|
|
|
|
|
class Encoder(nn.Module): |
|
""" Encoder """ |
|
|
|
def __init__(self, config): |
|
super(Encoder, self).__init__() |
|
|
|
n_position = config["max_seq_len"] + 1 |
|
n_src_vocab = len(symbols) + 1 |
|
d_word_vec = config["transformer"]["encoder_hidden"] |
|
n_layers = config["transformer"]["encoder_layer"] |
|
n_head = config["transformer"]["encoder_head"] |
|
d_k = d_v = ( |
|
config["transformer"]["encoder_hidden"] |
|
// config["transformer"]["encoder_head"] |
|
) |
|
d_model = config["transformer"]["encoder_hidden"] |
|
d_inner = config["transformer"]["conv_filter_size"] |
|
kernel_size = config["transformer"]["conv_kernel_size"] |
|
dropout = config["transformer"]["encoder_dropout"] |
|
|
|
self.max_seq_len = config["max_seq_len"] |
|
self.d_model = d_model |
|
|
|
self.src_word_emb = nn.Embedding( |
|
n_src_vocab, d_word_vec, padding_idx=Constants.PAD |
|
) |
|
self.position_enc = nn.Parameter( |
|
get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0), |
|
requires_grad=False, |
|
) |
|
|
|
self.layer_stack = nn.ModuleList( |
|
[ |
|
FFTBlock( |
|
d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=dropout |
|
) |
|
for _ in range(n_layers) |
|
] |
|
) |
|
|
|
def forward(self, src_seq, mask, return_attns=False): |
|
|
|
enc_slf_attn_list = [] |
|
batch_size, max_len = src_seq.shape[0], src_seq.shape[1] |
|
|
|
|
|
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1) |
|
|
|
|
|
if not self.training and src_seq.shape[1] > self.max_seq_len: |
|
enc_output = self.src_word_emb(src_seq) + get_sinusoid_encoding_table( |
|
src_seq.shape[1], self.d_model |
|
)[: src_seq.shape[1], :].unsqueeze(0).expand(batch_size, -1, -1).to( |
|
src_seq.device |
|
) |
|
else: |
|
enc_output = self.src_word_emb(src_seq) + self.position_enc[ |
|
:, :max_len, : |
|
].expand(batch_size, -1, -1) |
|
|
|
for enc_layer in self.layer_stack: |
|
enc_output, enc_slf_attn = enc_layer( |
|
enc_output, mask=mask, slf_attn_mask=slf_attn_mask |
|
) |
|
if return_attns: |
|
enc_slf_attn_list += [enc_slf_attn] |
|
|
|
return enc_output |
|
|
|
|
|
class Decoder(nn.Module): |
|
""" Decoder """ |
|
|
|
def __init__(self, config): |
|
super(Decoder, self).__init__() |
|
|
|
n_position = config["max_seq_len"] + 1 |
|
d_word_vec = config["transformer"]["decoder_hidden"] |
|
n_layers = config["transformer"]["decoder_layer"] |
|
n_head = config["transformer"]["decoder_head"] |
|
d_k = d_v = ( |
|
config["transformer"]["decoder_hidden"] |
|
// config["transformer"]["decoder_head"] |
|
) |
|
d_model = config["transformer"]["decoder_hidden"] |
|
d_inner = config["transformer"]["conv_filter_size"] |
|
kernel_size = config["transformer"]["conv_kernel_size"] |
|
dropout = config["transformer"]["decoder_dropout"] |
|
|
|
self.max_seq_len = config["max_seq_len"] |
|
self.d_model = d_model |
|
|
|
self.position_enc = nn.Parameter( |
|
get_sinusoid_encoding_table(n_position, d_word_vec).unsqueeze(0), |
|
requires_grad=False, |
|
) |
|
|
|
self.layer_stack = nn.ModuleList( |
|
[ |
|
FFTBlock( |
|
d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=dropout |
|
) |
|
for _ in range(n_layers) |
|
] |
|
) |
|
|
|
def forward(self, enc_seq, mask, return_attns=False): |
|
|
|
dec_slf_attn_list = [] |
|
batch_size, max_len = enc_seq.shape[0], enc_seq.shape[1] |
|
|
|
|
|
if not self.training and enc_seq.shape[1] > self.max_seq_len: |
|
|
|
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1) |
|
dec_output = enc_seq + get_sinusoid_encoding_table( |
|
enc_seq.shape[1], self.d_model |
|
)[: enc_seq.shape[1], :].unsqueeze(0).expand(batch_size, -1, -1).to( |
|
enc_seq.device |
|
) |
|
else: |
|
max_len = min(max_len, self.max_seq_len) |
|
|
|
|
|
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1) |
|
dec_output = enc_seq[:, :max_len, :] + self.position_enc[ |
|
:, :max_len, : |
|
].expand(batch_size, -1, -1) |
|
mask = mask[:, :max_len] |
|
slf_attn_mask = slf_attn_mask[:, :, :max_len] |
|
|
|
for dec_layer in self.layer_stack: |
|
dec_output, dec_slf_attn = dec_layer( |
|
dec_output, mask=mask, slf_attn_mask=slf_attn_mask |
|
) |
|
if return_attns: |
|
dec_slf_attn_list += [dec_slf_attn] |
|
|
|
return dec_output, mask |
|
|