|
import os |
|
|
|
import librosa |
|
import numpy as np |
|
from scipy.io import wavfile |
|
from tqdm import tqdm |
|
|
|
from text import _clean_text |
|
|
|
|
|
def prepare_align(config): |
|
in_dir = config["path"]["corpus_path"] |
|
out_dir = config["path"]["raw_path"] |
|
sampling_rate = config["preprocessing"]["audio"]["sampling_rate"] |
|
max_wav_value = config["preprocessing"]["audio"]["max_wav_value"] |
|
cleaners = config["preprocessing"]["text"]["text_cleaners"] |
|
speaker = "EmoV_DB" |
|
with open(os.path.join(in_dir, "metadata.csv"), encoding="utf-8") as f: |
|
for line in tqdm(f): |
|
parts = line.strip().split("|") |
|
base_name = parts[0] |
|
text = parts[1] |
|
text = _clean_text(text, cleaners) |
|
|
|
wav_path = os.path.join(in_dir, "wavs", "{}.wav".format(base_name)) |
|
if os.path.exists(wav_path): |
|
os.makedirs(os.path.join(out_dir, speaker), exist_ok=True) |
|
wav, _ = librosa.load(wav_path, sampling_rate) |
|
wav = wav / max(abs(wav)) * max_wav_value |
|
wavfile.write( |
|
os.path.join(out_dir, speaker, "{}.wav".format(base_name)), |
|
sampling_rate, |
|
wav.astype(np.int16), |
|
) |
|
with open( |
|
os.path.join(out_dir, speaker, "{}.lab".format(base_name)), |
|
"w", |
|
) as f1: |
|
f1.write(text) |
|
|