Ionut-Bostan's picture
Upload 82 files
feec0bf
raw
history blame
1.44 kB
import os
import librosa
import numpy as np
from scipy.io import wavfile
from tqdm import tqdm
from text import _clean_text
def prepare_align(config):
in_dir = config["path"]["corpus_path"]
out_dir = config["path"]["raw_path"]
sampling_rate = config["preprocessing"]["audio"]["sampling_rate"]
max_wav_value = config["preprocessing"]["audio"]["max_wav_value"]
cleaners = config["preprocessing"]["text"]["text_cleaners"]
speaker = "EmoV_DB"
with open(os.path.join(in_dir, "metadata.csv"), encoding="utf-8") as f:
for line in tqdm(f):
parts = line.strip().split("|")
base_name = parts[0]
text = parts[1]
text = _clean_text(text, cleaners)
wav_path = os.path.join(in_dir, "wavs", "{}.wav".format(base_name))
if os.path.exists(wav_path):
os.makedirs(os.path.join(out_dir, speaker), exist_ok=True)
wav, _ = librosa.load(wav_path, sampling_rate)
wav = wav / max(abs(wav)) * max_wav_value
wavfile.write(
os.path.join(out_dir, speaker, "{}.wav".format(base_name)),
sampling_rate,
wav.astype(np.int16),
)
with open(
os.path.join(out_dir, speaker, "{}.lab".format(base_name)),
"w",
) as f1:
f1.write(text)