Spaces:
No application file
No application file
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: | |
| https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| client = InferenceClient("damo-vilab/modelscope-text-to-video-synthesis") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| # NOTE: Video models don't usually use "streaming" generation, so we'll just call once | |
| payload = { | |
| "inputs": message, | |
| "parameters": { | |
| "max_new_tokens": max_tokens, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| } | |
| } | |
| # Post directly to the model | |
| response = client.post(json=payload) | |
| video_url = response.get("video", None) | |
| if video_url: | |
| yield video_url | |
| else: | |
| yield "Failed to generate video." | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: | |
| https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are generating a creative video.", label="System message"), | |
| gr.Slider(minimum=1, maximum=1000, value=250, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.9, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |