debug
Browse filesSigned-off-by: n1ck-guo <heng.guo@intel.com>
- app.py +2 -0
- src/populate.py +0 -2
app.py
CHANGED
@@ -386,6 +386,8 @@ def filter_models(
|
|
386 |
|
387 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.group_size.name].isin(group_dtype)]
|
388 |
|
|
|
|
|
389 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
390 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
391 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
|
|
386 |
|
387 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.group_size.name].isin(group_dtype)]
|
388 |
|
389 |
+
print(filtered_df['model_name_for_query'])
|
390 |
+
|
391 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
392 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
393 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
src/populate.py
CHANGED
@@ -15,7 +15,6 @@ def get_leaderboard_df(results_path: str, requests_path: str, dynamic_path: str,
|
|
15 |
print(all_data_json)
|
16 |
all_data_json.append(baseline_row)
|
17 |
filter_models_flags(all_data_json)
|
18 |
-
print([all_data_json[i]['model_name_for_query'] for i in range(len(all_data_json))])
|
19 |
print("Keys in the first record of all_data_json:", all_data_json[0].keys())
|
20 |
|
21 |
|
@@ -27,7 +26,6 @@ def get_leaderboard_df(results_path: str, requests_path: str, dynamic_path: str,
|
|
27 |
|
28 |
# filter out if any of the benchmarks have not been produced
|
29 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
30 |
-
print("get_leaderboard_df:", df)
|
31 |
return raw_data, df
|
32 |
|
33 |
|
|
|
15 |
print(all_data_json)
|
16 |
all_data_json.append(baseline_row)
|
17 |
filter_models_flags(all_data_json)
|
|
|
18 |
print("Keys in the first record of all_data_json:", all_data_json[0].keys())
|
19 |
|
20 |
|
|
|
26 |
|
27 |
# filter out if any of the benchmarks have not been produced
|
28 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
29 |
return raw_data, df
|
30 |
|
31 |
|