|
import os |
|
os.system("pip install gradio==3.28.0") |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
from gradio_space_ci import enable_space_ci |
|
|
|
from src.display.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
FAQ_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
NUMERIC_INTERVALS, |
|
TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision, |
|
ComputeDtype, |
|
WeightDtype, |
|
QuantType |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, REPO, GIT_REQUESTS_PATH, GIT_STATUS_PATH, GIT_RESULTS_PATH |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
from src.scripts.update_all_request_files import update_dynamic_files |
|
from src.tools.collections import update_collections |
|
from src.tools.plots import ( |
|
create_metric_plot_obj, |
|
create_plot_df, |
|
create_scores_df, |
|
) |
|
|
|
|
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) |
|
|
|
|
|
def init_space(full_init: bool = True): |
|
if full_init: |
|
try: |
|
branch = REPO.active_branch.name |
|
REPO.remotes.origin.pull(branch) |
|
except Exception as e: |
|
print(str(e)) |
|
restart_space() |
|
|
|
try: |
|
print(DYNAMIC_INFO_PATH) |
|
snapshot_download( |
|
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
raw_data, original_df = get_leaderboard_df( |
|
results_path=GIT_RESULTS_PATH, |
|
requests_path=GIT_STATUS_PATH, |
|
dynamic_path=DYNAMIC_INFO_FILE_PATH, |
|
cols=COLS, |
|
benchmark_cols=BENCHMARK_COLS |
|
) |
|
update_collections(original_df.copy()) |
|
leaderboard_df = original_df.copy() |
|
|
|
plot_df = create_plot_df(create_scores_df(raw_data)) |
|
|
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(GIT_STATUS_PATH, EVAL_COLS) |
|
|
|
return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df |
|
|
|
leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() |
|
|
|
def str_to_bool(value): |
|
if str(value).lower() == "true": |
|
return True |
|
elif str(value).lower() == "false": |
|
return False |
|
else: |
|
return False |
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, |
|
columns: list, |
|
type_query: list, |
|
precision_query: str, |
|
size_query: list, |
|
hide_models: list, |
|
query: str, |
|
compute_dtype: str, |
|
weight_dtype: str, |
|
double_quant: str |
|
): |
|
|
|
compute_dtype = [compute_dtype] |
|
weight_dtype = [weight_dtype] |
|
double_quant = [str_to_bool(double_quant)] |
|
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models, compute_dtype=compute_dtype, weight_dtype=weight_dtype, double_quant=double_quant) |
|
filtered_df = filter_queries(query, filtered_df) |
|
df = select_columns(filtered_df, columns) |
|
return df |
|
|
|
|
|
def load_query(request: gr.Request): |
|
query = request.query_params.get("query") or "" |
|
return query, query |
|
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] |
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
dummy_col = [AutoEvalColumn.dummy.name] |
|
|
|
|
|
|
|
filtered_df = df[ |
|
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col |
|
] |
|
return filtered_df |
|
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame): |
|
"""Added by Abishek""" |
|
final_df = [] |
|
if query != "": |
|
queries = [q.strip() for q in query.split(";")] |
|
for _q in queries: |
|
_q = _q.strip() |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df) |
|
filtered_df = filtered_df.drop_duplicates( |
|
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] |
|
) |
|
|
|
return filtered_df |
|
|
|
|
|
def filter_models( |
|
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list, compute_dtype: list, weight_dtype: list, double_quant: list |
|
) -> pd.DataFrame: |
|
|
|
if "Private or deleted" in hide_models: |
|
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] |
|
else: |
|
filtered_df = df |
|
|
|
if "Contains a merge/moerge" in hide_models: |
|
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False] |
|
|
|
if "MoE" in hide_models: |
|
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False] |
|
|
|
if "Flagged" in hide_models: |
|
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False] |
|
|
|
type_emoji = [t[0] for t in type_query] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] |
|
|
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.weight_dtype.name].isin(weight_dtype)] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.compute_dtype.name].isin(compute_dtype)] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.double_quant.name].isin(double_quant)] |
|
|
|
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) |
|
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") |
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) |
|
filtered_df = filtered_df.loc[mask] |
|
|
|
return filtered_df |
|
|
|
leaderboard_df = filter_models( |
|
df=leaderboard_df, |
|
type_query=[t.to_str(" : ") for t in QuantType], |
|
size_query=list(NUMERIC_INTERVALS.keys()), |
|
precision_query=[i.value.name for i in Precision], |
|
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], |
|
compute_dtype=[i.value.name for i in ComputeDtype], |
|
weight_dtype=[i.value.name for i in WeightDtype], |
|
double_quant=[True, False] |
|
|
|
) |
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if not c.hidden and not c.never_hidden and not c.dummy |
|
], |
|
value=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if c.displayed_by_default and not c.hidden and not c.never_hidden |
|
], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
filter_columns_size = gr.CheckboxGroup( |
|
label="Model sizes (in billions of parameters)", |
|
choices=list(NUMERIC_INTERVALS.keys()), |
|
value=list(NUMERIC_INTERVALS.keys()), |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
) |
|
with gr.Column(min_width=320): |
|
|
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Quantization types", |
|
choices=[t.to_str() for t in QuantType], |
|
value=[t.to_str() for t in QuantType], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
filter_columns_precision = gr.CheckboxGroup( |
|
label="Precision", |
|
choices=[i.value.name for i in Precision], |
|
value=[i.value.name for i in Precision], |
|
interactive=True, |
|
elem_id="filter-columns-precision", |
|
) |
|
with gr.Box() as config: |
|
gr.HTML("""<p style='padding-bottom: 0.5rem; '>Quantization config</p>""") |
|
with gr.Row(): |
|
filter_columns_computeDtype = gr.Dropdown(choices=[i.value.name for i in ComputeDtype], label="Compute Dtype", multiselect=False, value="float16", interactive=True,) |
|
filter_columns_weightDtype = gr.Dropdown(choices=[i.value.name for i in WeightDtype], label="Weight Dtype", multiselect=False, value="int4", interactive=True,) |
|
filter_columns_doubleQuant = gr.Dropdown(choices=["True", "False"], label="Double Quant", multiselect=False, value=False, interactive=True) |
|
|
|
|
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=leaderboard_df[ |
|
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
+ shown_columns.value |
|
+ [AutoEvalColumn.dummy.name] |
|
], |
|
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
|
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=original_df[COLS], |
|
headers=COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
|
|
hide_models = gr.Textbox( |
|
placeholder="", |
|
show_label=False, |
|
elem_id="search-bar", |
|
value="", |
|
visible=False, |
|
|
|
) |
|
|
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
hide_models, |
|
search_bar, |
|
filter_columns_computeDtype, |
|
filter_columns_weightDtype, |
|
filter_columns_doubleQuant |
|
], |
|
leaderboard_table, |
|
) |
|
|
|
""" |
|
|
|
|
|
|
|
# Define a hidden component that will trigger a reload only if a query parameter has been set |
|
hidden_search_bar = gr.Textbox(value="", visible=False) |
|
hidden_search_bar.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
hide_models, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
) |
|
|
|
# Check query parameter once at startup and update search bar + hidden component |
|
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) |
|
|
|
""" |
|
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models, filter_columns_computeDtype, filter_columns_weightDtype, filter_columns_doubleQuant]: |
|
selector.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
hide_models, |
|
search_bar, |
|
filter_columns_computeDtype, |
|
filter_columns_weightDtype, |
|
filter_columns_doubleQuant |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
|
|
|
|
with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=2): |
|
with gr.Row(): |
|
with gr.Column(): |
|
chart = create_metric_plot_obj( |
|
plot_df, |
|
[AutoEvalColumn.average.name], |
|
title="Average of Top Scores and Human Baseline Over Time (from last update)", |
|
) |
|
gr.Plot(value=chart, min_width=500) |
|
with gr.Column(): |
|
chart = create_metric_plot_obj( |
|
plot_df, |
|
BENCHMARK_COLS, |
|
title="Top Scores and Human Baseline Over Time (from last update)", |
|
) |
|
gr.Plot(value=chart, min_width=500) |
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("βFAQ", elem_id="llm-benchmark-tab-table", id=4): |
|
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("π Submit ", elem_id="llm-benchmark-tab-table", id=5): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) |
|
|
|
""" |
|
quant_type = gr.Dropdown( |
|
choices=[i.value.name for i in QuantType if i != QuantType.Unknown], |
|
label="Quantization type", |
|
multiselect=False, |
|
value="GPTQ", |
|
interactive=True, |
|
) |
|
""" |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="4bit", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightDtype], |
|
label="Weights dtype", |
|
multiselect=False, |
|
value="int4", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", |
|
visible=not IS_PUBLIC) |
|
compute_type = gr.Dropdown( |
|
choices=[i.value.name for i in ComputeDtype], |
|
label="Compute dtype", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
revision_name_textbox, |
|
private, |
|
|
|
precision, |
|
weight_type, |
|
compute_type, |
|
], |
|
submission_result, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", hours=3) |
|
scheduler.add_job(update_dynamic_files, "interval", hours=2) |
|
scheduler.start() |
|
|
|
|
|
|
|
demo.queue( |
|
concurrency_count=100, status_update_rate=10 |
|
).launch( |
|
max_threads=100 |
|
) |
|
|