|
import glob |
|
import json |
|
import math |
|
import os |
|
import traceback |
|
from dataclasses import dataclass |
|
|
|
import dateutil |
|
import numpy as np |
|
|
|
from huggingface_hub import ModelCard |
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, QuantType, WeightDtype, ComputeDtype |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
|
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: dict |
|
quant_type: QuantType = QuantType.Unknown |
|
precision: Precision = Precision.Unknown |
|
weight_dtype: WeightDtype = WeightDtype.Unknown |
|
compute_dtype: ComputeDtype = ComputeDtype.Unknown |
|
double_quant: bool = False |
|
model_type: ModelType = ModelType.Unknown |
|
weight_type: WeightType = WeightType.Original |
|
architecture: str = "Unknown" |
|
license: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
model_size: int = 0 |
|
group_size: int = -1 |
|
date: str = "" |
|
still_on_hub: bool = True |
|
is_merge: bool = False |
|
flagged: bool = False |
|
status: str = "Finished" |
|
tags: list = None |
|
result_file: str = "" |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
|
|
result_file = "/".join(json_filepath.split("/")[2:]) |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
|
|
config = data.get("config_general") |
|
|
|
|
|
precision = Precision.from_str(config.get("precision", "4bit")) |
|
quant_type = QuantType.from_str(str(config.get("quant_type", "GPTQ"))) |
|
weight_dtype = WeightDtype.from_str(data["task_info"].get("weight_dtype", "int4")) |
|
compute_dtype = ComputeDtype.from_str(data["task_info"].get("compute_dtype", "bfloat16")) |
|
|
|
model_params = round(float(config["model_params"]), 2) |
|
model_size = round(float(config["model_size"]), 2) |
|
|
|
if data.get("quantization_config", None): |
|
double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False) |
|
group_size = data["quantization_config"].get("group_size", -1) |
|
else: |
|
double_quant = False |
|
group_size = -1 |
|
|
|
local = config.get("local", False) |
|
if not local: |
|
local = data["task_info"].get("local", False) |
|
|
|
|
|
org_and_model = config.get("model_name") |
|
org_and_model = org_and_model.split("/", 1) |
|
|
|
if local and org_and_model[0] != "Intel": |
|
org_and_model = config.get("model_name").split("/") |
|
|
|
org_and_model = ["local", org_and_model[-1]] |
|
quant_type = QuantType.autoround |
|
|
|
if len(org_and_model) == 1: |
|
org = None |
|
model = org_and_model[0] |
|
result_key = f"{model}_{precision.value.name}" |
|
else: |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
result_key = f"{org}_{model}_{precision.value.name}" |
|
full_model = "/".join(org_and_model) |
|
|
|
|
|
results = {} |
|
for task in Tasks: |
|
task = task.value |
|
if task.benchmark == "mmlu": |
|
accs = np.array([data["results"]["harness|mmlu|0"][task.metric]]) |
|
else: |
|
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k]) |
|
if accs.size == 0 or any([acc is None for acc in accs]): |
|
continue |
|
|
|
mean_acc = np.mean(accs) * 100.0 |
|
mean_acc = round(mean_acc, 2) |
|
results[task.benchmark] = mean_acc |
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=results, |
|
precision=precision, |
|
quant_type=quant_type, |
|
weight_dtype=weight_dtype, |
|
compute_dtype=compute_dtype, |
|
double_quant=double_quant, |
|
revision=config.get("model_sha", "main"), |
|
num_params=model_params, |
|
model_size=model_size, |
|
group_size=group_size, |
|
result_file=result_file |
|
) |
|
|
|
def update_with_request_file(self, requests_path): |
|
"""Finds the relevant request file for the current model and updates info with it""" |
|
request_file = get_request_file_for_model(requests_path, self.full_model, |
|
self.quant_type.value.name, self.precision.value.name, |
|
self.weight_dtype.value.name, self.compute_dtype.value.name) |
|
|
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
|
|
|
|
|
|
self.date = request.get("submitted_time", "") |
|
self.architecture = request.get("architectures", "Unknown") |
|
self.status = request.get("status", "Failed") |
|
except Exception as e: |
|
print(requests_path, self.full_model, |
|
self.quant_type.value.name, self.precision.value.name, |
|
self.weight_dtype.value.name, self.compute_dtype.value.name) |
|
self.status = "Failed" |
|
print(f"Could not find request file for {self.org}/{self.model}") |
|
print(traceback.format_exc()) |
|
|
|
def update_with_dynamic_file_dict(self, file_dict): |
|
self.license = file_dict.get("license", "?") |
|
self.likes = file_dict.get("likes", 0) |
|
self.still_on_hub = file_dict["still_on_hub"] |
|
self.tags = file_dict.get("tags", []) |
|
self.flagged = any("flagged" in tag for tag in self.tags) |
|
|
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks) |
|
|
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
AutoEvalColumn.precision.name: self.precision.value.name, |
|
AutoEvalColumn.quant_type.name: self.quant_type.value.name, |
|
AutoEvalColumn.model_type_symbol.name: self.quant_type.value.symbol, |
|
AutoEvalColumn.weight_dtype.name: self.weight_dtype.value.name, |
|
AutoEvalColumn.compute_dtype.name: self.compute_dtype.value.name, |
|
AutoEvalColumn.double_quant.name: self.double_quant, |
|
AutoEvalColumn.model_type.name: self.model_type.value.name, |
|
AutoEvalColumn.weight_type.name: self.weight_type.value.name, |
|
AutoEvalColumn.architecture.name: self.architecture, |
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.result_file), |
|
AutoEvalColumn.dummy.name: self.full_model, |
|
AutoEvalColumn.revision.name: self.revision, |
|
AutoEvalColumn.average.name: average, |
|
AutoEvalColumn.license.name: self.license, |
|
AutoEvalColumn.likes.name: self.likes, |
|
AutoEvalColumn.params.name: self.num_params, |
|
AutoEvalColumn.model_size.name: self.model_size, |
|
AutoEvalColumn.group_size.name: self.group_size, |
|
AutoEvalColumn.still_on_hub.name: self.still_on_hub, |
|
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False, |
|
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(), |
|
AutoEvalColumn.flagged.name: self.flagged |
|
} |
|
|
|
for task in Tasks: |
|
data_dict[task.value.col_name] = self.results[task.value.benchmark] |
|
|
|
return data_dict |
|
|
|
|
|
def get_request_file_for_model(requests_path, model_name, |
|
quant_type, precision, weight_dtype, compute_dtype): |
|
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" |
|
|
|
request_files = os.path.join( |
|
requests_path, |
|
f"{model_name}_eval_request_*.json", |
|
) |
|
request_files = glob.glob(request_files) |
|
|
|
|
|
request_file = "" |
|
request_files = sorted(request_files, reverse=True) |
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if ( |
|
req_content["status"] in ["Finished"] |
|
and req_content["precision"] == precision.split(".")[-1] |
|
and str(req_content["quant_type"]) == quant_type |
|
and req_content["weight_dtype"] == weight_dtype.split(".")[-1] |
|
and req_content["compute_dtype"] == compute_dtype.split(".")[-1] |
|
): |
|
request_file = tmp_request_file |
|
elif ( |
|
req_content["status"] in ["Finished"] |
|
and req_content["precision"] == precision.split(".")[-1] |
|
and quant_type == "AutoRound" |
|
and req_content["weight_dtype"] == weight_dtype.split(".")[-1] |
|
and req_content["compute_dtype"] == compute_dtype.split(".")[-1] |
|
): |
|
request_file = tmp_request_file |
|
return request_file |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]): |
|
continue |
|
|
|
|
|
try: |
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
except dateutil.parser._parser.ParserError: |
|
files = [files[-1]] |
|
|
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
with open(dynamic_path) as f: |
|
dynamic_data = json.load(f) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
eval_result.update_with_request_file(requests_path) |
|
if eval_result.full_model in dynamic_data: |
|
|
|
|
|
if "meta-llama" in eval_result.full_model: |
|
eval_result.still_on_hub = True |
|
|
|
|
|
eval_name = eval_result.eval_name |
|
if eval_name in eval_results.keys(): |
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) |
|
else: |
|
eval_results[eval_name] = eval_result |
|
|
|
|
|
results = [] |
|
for v in eval_results.values(): |
|
try: |
|
if v.status == "Finished": |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
continue |
|
|
|
return results |
|
|