|
import os |
|
|
|
os.system("pip install gradio==4.43.0 pydantic==2.7.1 gradio_modal==0.0.3 transformers==4.43.1 huggingface-hub==0.23.2") |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import re |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
from gradio_space_ci import enable_space_ci |
|
|
|
from src.display.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
FAQ_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
NUMERIC_INTERVALS, |
|
NUMERIC_MODELSIZE, |
|
TYPES, |
|
AutoEvalColumn, |
|
GroupDtype, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision, |
|
ComputeDtype, |
|
WeightDtype, |
|
QuantType |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, REPO, GIT_REQUESTS_PATH, GIT_STATUS_PATH, GIT_RESULTS_PATH |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
from src.scripts.update_all_request_files import update_dynamic_files |
|
from src.tools.collections import update_collections |
|
from src.tools.plots import ( |
|
create_metric_plot_obj, |
|
create_plot_df, |
|
create_scores_df, |
|
) |
|
from gradio_modal import Modal |
|
import plotly.graph_objects as go |
|
|
|
selected_indices = [] |
|
selected_values = {} |
|
selected_dropdown_weight = 'All' |
|
|
|
|
|
|
|
|
|
precision_to_dtype = { |
|
"2bit": ["int2"], |
|
"3bit": ["int3"], |
|
"4bit": ["int4", "nf4", "fp4"], |
|
"8bit": ["int8"], |
|
"16bit": ['float16', 'bfloat16'], |
|
"32bit": ["float32"], |
|
"?": ["?"], |
|
} |
|
|
|
dtype_to_precision = { |
|
"int2": ["2bit"], |
|
"int3": ["3bit"], |
|
"int4": ["4bit"], |
|
"nf4": ["4bit"], |
|
"fp4": ["4bit"], |
|
"int8": ["8bit"], |
|
"float16": ["16bit"], |
|
"bfloat16": ["16bit"], |
|
"float32": ["32bit"], |
|
"?": ["?"], |
|
} |
|
|
|
current_weightDtype = ["int2", "int3", "int4", "nf4", "fp4", "?"] |
|
current_computeDtype = ['int8', 'bfloat16', 'float16', 'float32'] |
|
current_quant = [t.to_str() for t in QuantType if t != QuantType.QuantType_None] |
|
current_precision = ['2bit', '3bit', '4bit', '8bit', '?'] |
|
|
|
|
|
def display_sort(key): |
|
order = {"All": 0, "?": 1, "int2": 2, "int3": 3, "int4": 4, "fp4": 5, "nf4": 6, "float16": 7, "bfloat16": 8, "float32": 9} |
|
return order.get(key, float('inf')) |
|
|
|
def comp_display_sort(key): |
|
order = {"All": 0, "?": 1, "int8": 2, "float16": 3, "bfloat16": 4, "float32": 5} |
|
return order.get(key, float('inf')) |
|
|
|
def update_quantization_types(selected_quant): |
|
global current_weightDtype |
|
global current_computeDtype |
|
global current_quant |
|
global current_precision |
|
|
|
if set(current_quant) == set(selected_quant): |
|
return [ |
|
gr.Dropdown(choices=current_weightDtype, value=selected_dropdown_weight), |
|
gr.Dropdown(choices=current_computeDtype, value="All"), |
|
gr.CheckboxGroup(value=current_precision), |
|
] |
|
|
|
print('update_quantization_types', selected_quant, current_quant) |
|
if any(value != 'β None' for value in selected_quant): |
|
selected_weight = ['All', '?', 'int2', 'int3', 'int4', 'nf4', 'fp4', 'int8'] |
|
selected_compute = ['All', '?', 'int8', 'float16', 'bfloat16', 'float32'] |
|
selected_precision = ["2bit", "3bit", "4bit", "8bit", "?"] |
|
|
|
current_weightDtype = selected_weight |
|
current_computeDtype = selected_compute |
|
current_quant = selected_quant |
|
current_precision = selected_precision |
|
|
|
return [ |
|
gr.Dropdown(choices=selected_weight, value="All"), |
|
gr.Dropdown(choices=selected_compute, value="All"), |
|
gr.CheckboxGroup(value=selected_precision), |
|
] |
|
|
|
def update_Weight_Precision(temp_precisions): |
|
global current_weightDtype |
|
global current_computeDtype |
|
global current_quant |
|
global current_precision |
|
global selected_dropdown_weight |
|
|
|
print('temp_precisions', temp_precisions) |
|
if set(current_precision) == set(temp_precisions): |
|
return [ |
|
gr.Dropdown(choices=current_weightDtype, value=selected_dropdown_weight), |
|
gr.Dropdown(choices=current_computeDtype, value="All"), |
|
gr.CheckboxGroup(value=current_precision), |
|
gr.CheckboxGroup(value=current_quant), |
|
] |
|
|
|
selected_weight = [] |
|
selected_compute = ['All', '?', 'int8', 'float16', 'bfloat16', 'float32'] |
|
selected_quant = [t.to_str() for t in QuantType if t != QuantType.QuantType_None] |
|
|
|
if temp_precisions[-1] in ["16bit", "32bit"]: |
|
selected_precisions = [p for p in temp_precisions if p in ["16bit", "32bit"]] |
|
else: |
|
selected_precisions = [p for p in temp_precisions if p not in ["16bit", "32bit"]] |
|
|
|
current_precision = list(set(selected_precisions)) |
|
print('selected_dropdown_weight', selected_dropdown_weight) |
|
|
|
if len(current_precision) > 1: |
|
selected_dropdown_weight = 'All' |
|
elif selected_dropdown_weight != 'All' and set(dtype_to_precision[selected_dropdown_weight]) != set(current_precision): |
|
selected_dropdown_weight = 'All' |
|
|
|
print('final', current_precision) |
|
|
|
for precision in current_precision: |
|
if precision in precision_to_dtype: |
|
selected_weight.extend(precision_to_dtype[precision]) |
|
|
|
|
|
if "16bit" in current_precision: |
|
selected_weight = [option for option in selected_weight if option in ["All", "?", "float16", "bfloat16"]] |
|
if "int8" in selected_compute: |
|
selected_compute.remove("int8") |
|
|
|
if "32bit" in current_precision: |
|
selected_weight = [option for option in selected_weight if option in ["All", "?", "float32"]] |
|
if "int8" in selected_compute: |
|
selected_compute.remove("int8") |
|
|
|
if "16bit" in current_precision or "32bit" in current_precision: |
|
selected_quant = ['β None'] |
|
if "16bit" in current_precision and "32bit" in current_precision: |
|
selected_weight = ["All", "?", "float16", "bfloat16", "float32"] |
|
|
|
selected_weight = ["All", "?"] + [opt for opt in selected_weight if opt not in ["All", "?"]] |
|
selected_compute = ["All", "?"] + [opt for opt in selected_compute if opt not in ["All", "?"]] |
|
|
|
|
|
selected_weight = list(set(selected_weight)) |
|
selected_compute = list(set(selected_compute)) |
|
|
|
|
|
current_weightDtype = selected_weight |
|
current_computeDtype = selected_compute |
|
current_quant = selected_quant |
|
|
|
|
|
return [ |
|
gr.Dropdown(choices=selected_weight, value=selected_dropdown_weight), |
|
gr.Dropdown(choices=selected_compute, value="All"), |
|
gr.CheckboxGroup(value=selected_precisions), |
|
gr.CheckboxGroup(value=selected_quant), |
|
] |
|
|
|
def update_Weight_Dtype(weight): |
|
global selected_dropdown_weight |
|
print('update_Weight_Dtype', weight) |
|
|
|
if weight == selected_dropdown_weight or weight == 'All': |
|
return current_precision |
|
else: |
|
selected_precisions = [] |
|
selected_precisions.extend(dtype_to_precision[weight]) |
|
selected_dropdown_weight = weight |
|
print('selected_precisions', selected_precisions) |
|
|
|
return selected_precisions |
|
|
|
|
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) |
|
|
|
|
|
def init_space(full_init: bool = True): |
|
|
|
if full_init: |
|
try: |
|
branch = REPO.active_branch.name |
|
REPO.remotes.origin.pull(branch) |
|
except Exception as e: |
|
print(str(e)) |
|
restart_space() |
|
|
|
try: |
|
print(DYNAMIC_INFO_PATH) |
|
snapshot_download( |
|
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
raw_data, original_df = get_leaderboard_df( |
|
results_path=GIT_RESULTS_PATH, |
|
requests_path=GIT_STATUS_PATH, |
|
dynamic_path=DYNAMIC_INFO_FILE_PATH, |
|
cols=COLS, |
|
benchmark_cols=BENCHMARK_COLS |
|
) |
|
|
|
leaderboard_df = original_df.copy() |
|
|
|
plot_df = create_plot_df(create_scores_df(raw_data)) |
|
|
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(GIT_STATUS_PATH, EVAL_COLS) |
|
|
|
return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df |
|
|
|
leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() |
|
|
|
def str_to_bool(value): |
|
if str(value).lower() == "true": |
|
return True |
|
elif str(value).lower() == "false": |
|
return False |
|
else: |
|
return False |
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, |
|
columns: list, |
|
type_query: list, |
|
precision_query: str, |
|
size_query: list, |
|
params_query: list, |
|
hide_models: list, |
|
query: str, |
|
compute_dtype: str, |
|
weight_dtype: str, |
|
double_quant: str, |
|
group_dtype: str |
|
): |
|
global init_select |
|
global current_weightDtype |
|
global current_computeDtype |
|
|
|
if weight_dtype == ['All'] or weight_dtype == 'All': |
|
weight_dtype = current_weightDtype |
|
else: |
|
weight_dtype = [weight_dtype] |
|
|
|
if compute_dtype == 'All': |
|
compute_dtype = current_computeDtype |
|
else: |
|
compute_dtype = [compute_dtype] |
|
|
|
if group_dtype == 'All': |
|
group_dtype = [-1, 1024, 256, 128, 64, 32] |
|
else: |
|
try: |
|
group_dtype = [int(group_dtype)] |
|
except ValueError: |
|
group_dtype = [-1] |
|
|
|
double_quant = [str_to_bool(double_quant)] |
|
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models, compute_dtype=compute_dtype, weight_dtype=weight_dtype, double_quant=double_quant, group_dtype=group_dtype, params_query=params_query) |
|
filtered_df = filter_queries(query, filtered_df) |
|
df = select_columns(filtered_df, columns) |
|
return df |
|
|
|
|
|
def load_query(request: gr.Request): |
|
query = request.query_params.get("query") or "" |
|
return query, query |
|
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] |
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
dummy_col = [AutoEvalColumn.dummy.name] |
|
|
|
filtered_df = df[ |
|
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col |
|
] |
|
return filtered_df |
|
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame): |
|
"""Added by Abishek""" |
|
final_df = [] |
|
if query != "": |
|
queries = [q.strip() for q in query.split(";")] |
|
for _q in queries: |
|
_q = _q.strip() |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df) |
|
filtered_df = filtered_df.drop_duplicates( |
|
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] |
|
) |
|
|
|
return filtered_df |
|
|
|
|
|
def filter_models( |
|
df: pd.DataFrame, type_query: list, size_query: list, params_query:list, precision_query: list, hide_models: list, compute_dtype: list, weight_dtype: list, double_quant: list, group_dtype: list, |
|
) -> pd.DataFrame: |
|
|
|
if "Private or deleted" in hide_models: |
|
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] |
|
else: |
|
filtered_df = df |
|
|
|
if "Contains a merge/moerge" in hide_models: |
|
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False] |
|
|
|
if "MoE" in hide_models: |
|
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False] |
|
|
|
if "Flagged" in hide_models: |
|
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False] |
|
|
|
type_emoji = [t[0] for t in type_query] |
|
if any(emoji != 'β' for emoji in type_emoji): |
|
type_emoji = [emoji for emoji in type_emoji if emoji != 'β'] |
|
else: |
|
type_emoji = ['β'] |
|
|
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] |
|
|
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.weight_dtype.name].isin(weight_dtype)] |
|
|
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.compute_dtype.name].isin(compute_dtype)] |
|
|
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.double_quant.name].isin(double_quant)] |
|
|
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.group_size.name].isin(group_dtype)] |
|
|
|
print(filtered_df['model_name_for_query'].to_list()) |
|
|
|
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) |
|
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") |
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) |
|
filtered_df = filtered_df.loc[mask] |
|
|
|
print('step 2') |
|
print(filtered_df['model_name_for_query'].to_list()) |
|
|
|
numeric_interval_params = pd.IntervalIndex(sorted([NUMERIC_MODELSIZE[s] for s in params_query])) |
|
params_column_params = pd.to_numeric(df[AutoEvalColumn.model_size.name], errors="coerce") |
|
mask_params = params_column_params.apply(lambda x: any(numeric_interval_params.contains(x))) |
|
filtered_df = filtered_df.loc[mask_params] |
|
print('step 3') |
|
print(filtered_df['model_name_for_query']) |
|
|
|
return filtered_df |
|
|
|
def select(df, data: gr.SelectData): |
|
global selected_indices |
|
global selected_values |
|
|
|
selected_index = data.index[0] |
|
if selected_index in selected_indices: |
|
selected_indices.remove(selected_index) |
|
|
|
value = df.iloc[selected_index].iloc[1] |
|
pattern = r'<a[^>]+>([^<]+)</a>' |
|
match = re.search(pattern, value) |
|
if match: |
|
text_content = match.group(1) |
|
if text_content in selected_values: |
|
del selected_values[text_content] |
|
else: |
|
selected_indices.append(selected_index) |
|
|
|
value = df.iloc[selected_index].iloc[1] |
|
pattern = r'<a[^>]+>([^<]+)</a>' |
|
match = re.search(pattern, value) |
|
if match: |
|
text_content = match.group(1) |
|
selected_values[text_content] = value |
|
|
|
return gr.CheckboxGroup(list(selected_values.keys()), value=list(selected_values.keys())) |
|
|
|
def init_comparison_data(): |
|
global selected_values |
|
return gr.CheckboxGroup(list(selected_values.keys()), value=list(selected_values.keys())) |
|
|
|
def generate_spider_chart(df, selected_keys): |
|
global selected_values |
|
current_selected_values = [selected_values[key] for key in selected_keys if key in selected_values] |
|
selected_rows = df[df.iloc[:, 1].isin(current_selected_values)] |
|
|
|
|
|
fig = go.Figure() |
|
for _, row in selected_rows.iterrows(): |
|
fig.add_trace(go.Scatterpolar( |
|
r=[row['Average β¬οΈ'], row['ARC-c'], row['ARC-e'], row['Boolq'], row['HellaSwag'], row['Lambada'], row['MMLU'], row['Openbookqa'], row['Piqa'], row['Truthfulqa'], row['Winogrande']], |
|
theta=['Average β¬οΈ', 'ARC-c', 'ARC-e', 'Boolq', 'HellaSwag', 'Lambada', 'MMLU', 'Openbookqa', 'Piqa', 'Truthfulqa', 'Winogrande'], |
|
fill='toself', |
|
name=str(row['Model']) |
|
)) |
|
fig.update_layout( |
|
polar=dict( |
|
radialaxis=dict( |
|
visible=False, |
|
)), |
|
showlegend=True |
|
) |
|
|
|
return fig |
|
|
|
leaderboard_df = filter_models( |
|
df=leaderboard_df, |
|
type_query=[t.to_str(" : ") for t in QuantType if t != QuantType.QuantType_None], |
|
size_query=list(NUMERIC_INTERVALS.keys()), |
|
params_query=list(NUMERIC_MODELSIZE.keys()), |
|
precision_query=[i.value.name for i in Precision], |
|
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], |
|
compute_dtype=[i.value.name for i in ComputeDtype], |
|
weight_dtype=[i.value.name for i in WeightDtype], |
|
double_quant=[True, False], |
|
group_dtype=[-1, 1024, 256, 128, 64, 32] |
|
) |
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if not c.hidden and not c.never_hidden and not c.dummy |
|
], |
|
value=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if c.displayed_by_default and not c.hidden and not c.never_hidden |
|
], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
|
|
with gr.Row(): |
|
filter_columns_parameters = gr.CheckboxGroup( |
|
label="Model parameters (in billions of parameters)", |
|
choices=list(NUMERIC_INTERVALS.keys()), |
|
value=list(NUMERIC_INTERVALS.keys()), |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
) |
|
with gr.Row(): |
|
filter_columns_size = gr.CheckboxGroup( |
|
label="Model sizes (GB, int4)", |
|
choices=list(NUMERIC_MODELSIZE.keys()), |
|
value=list(NUMERIC_MODELSIZE.keys()), |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
) |
|
with gr.Column(min_width=320): |
|
|
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Quantization types", |
|
choices=[t.to_str() for t in QuantType if t != QuantType.QuantType_None], |
|
value=[t.to_str() for t in QuantType if t != QuantType.QuantType_None], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
filter_columns_precision = gr.CheckboxGroup( |
|
label="Weight precision", |
|
choices=[i.value.name for i in Precision], |
|
value=[i.value.name for i in Precision if ( i.value.name != '16bit' and i.value.name != '32bit')], |
|
interactive=True, |
|
elem_id="filter-columns-precision", |
|
) |
|
with gr.Group() as config: |
|
|
|
gr.HTML("""<p style='padding: 0.7rem; background: #fff; margin: 0; color: #6b7280;'>Quantization config</p>""") |
|
with gr.Row(): |
|
filter_columns_computeDtype = gr.Dropdown(choices=[i.value.name for i in ComputeDtype], label="Compute Dtype", multiselect=False, value="All", interactive=True,) |
|
filter_columns_weightDtype = gr.Dropdown(choices=[i.value.name for i in WeightDtype], label="Weight Dtype", multiselect=False, value="All", interactive=True,) |
|
filter_columns_doubleQuant = gr.Dropdown(choices=["True", "False"], label="Double Quant", multiselect=False, value="False", interactive=True) |
|
filter_columns_groupDtype = gr.Dropdown(choices=[i.value.name for i in GroupDtype], label="Group Size", multiselect=False, value="All", interactive=True,) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_comparison = gr.CheckboxGroup(label="Accuracy Comparison (Selected Models from Table)", choices=list(selected_values.keys()), value=list(selected_values.keys()), interactive=True, elem_id="model_comparison") |
|
with gr.Column(): |
|
spider_btn = gr.Button("Compare") |
|
|
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=leaderboard_df[ |
|
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
+ shown_columns.value |
|
+ [AutoEvalColumn.dummy.name] |
|
], |
|
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
|
|
) |
|
|
|
with Modal(visible=False) as modal: |
|
map = gr.Plot() |
|
|
|
leaderboard_table.select(select, leaderboard_table, model_comparison) |
|
spider_btn.click(generate_spider_chart, [leaderboard_table, model_comparison], map) |
|
spider_btn.click(lambda: Modal(visible=True), None, modal) |
|
demo.load(init_comparison_data, None, model_comparison) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=original_df[COLS], |
|
headers=COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
|
|
hide_models = gr.Textbox( |
|
placeholder="", |
|
show_label=False, |
|
elem_id="search-bar", |
|
value="", |
|
visible=False, |
|
|
|
) |
|
|
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_parameters, |
|
filter_columns_size, |
|
hide_models, |
|
search_bar, |
|
filter_columns_computeDtype, |
|
filter_columns_weightDtype, |
|
filter_columns_doubleQuant, |
|
filter_columns_groupDtype |
|
], |
|
leaderboard_table, |
|
) |
|
|
|
""" |
|
|
|
# Define a hidden component that will trigger a reload only if a query parameter has been set |
|
hidden_search_bar = gr.Textbox(value="", visible=False) |
|
hidden_search_bar.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
hide_models, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
) |
|
# Check query parameter once at startup and update search bar + hidden component |
|
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) |
|
|
|
""" |
|
filter_columns_type.change( |
|
update_quantization_types, |
|
[filter_columns_type], |
|
[filter_columns_weightDtype, filter_columns_computeDtype, filter_columns_precision] |
|
) |
|
|
|
filter_columns_precision.change( |
|
update_Weight_Precision, |
|
[filter_columns_precision], |
|
[filter_columns_weightDtype, filter_columns_computeDtype, filter_columns_precision, filter_columns_type] |
|
) |
|
|
|
filter_columns_weightDtype.change( |
|
update_Weight_Dtype, |
|
[filter_columns_weightDtype], |
|
[filter_columns_precision] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_parameters, hide_models, filter_columns_computeDtype, filter_columns_weightDtype, filter_columns_doubleQuant, filter_columns_groupDtype]: |
|
selector.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_parameters, |
|
filter_columns_size, |
|
hide_models, |
|
search_bar, |
|
filter_columns_computeDtype, |
|
filter_columns_weightDtype, |
|
filter_columns_doubleQuant, |
|
filter_columns_groupDtype |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
|
|
|
|
with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=2): |
|
with gr.Row(): |
|
with gr.Column(): |
|
chart = create_metric_plot_obj( |
|
plot_df, |
|
[AutoEvalColumn.average.name], |
|
title="Average of Top Scores and Human Baseline Over Time (from last update)", |
|
) |
|
gr.Plot(value=chart, min_width=500) |
|
with gr.Column(): |
|
chart = create_metric_plot_obj( |
|
plot_df, |
|
BENCHMARK_COLS, |
|
title="Top Scores and Human Baseline Over Time (from last update)", |
|
) |
|
gr.Plot(value=chart, min_width=500) |
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("βFAQ", elem_id="llm-benchmark-tab-table", id=4): |
|
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("π Submit ", elem_id="llm-benchmark-tab-table", id=5): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) |
|
|
|
with gr.Column(): |
|
""" |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="4bit", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightDtype], |
|
label="Weights dtype", |
|
multiselect=False, |
|
value="int4", |
|
interactive=True, |
|
) |
|
""" |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", |
|
visible=not IS_PUBLIC) |
|
compute_type = gr.Dropdown( |
|
choices=[i.value.name for i in ComputeDtype if i.value.name != "All"], |
|
label="Compute dtype", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
revision_name_textbox, |
|
private, |
|
compute_type, |
|
], |
|
submission_result, |
|
) |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", hours=3) |
|
scheduler.add_job(update_dynamic_files, "interval", hours=12) |
|
scheduler.start() |
|
|
|
demo.queue(default_concurrency_limit=40).launch() |
|
|
|
|