|
|
|
|
|
import streamlit as st
|
|
import os
|
|
from openai import OpenAI
|
|
import json
|
|
|
|
working_dir = os.path.dirname(os.path.abspath(__file__))
|
|
endpoint_data = json.load(open(f"{working_dir}/model_info.json"))
|
|
|
|
def clear_chat():
|
|
st.session_state.messages = []
|
|
|
|
st.title("Intel® AI for Enterprise Inference")
|
|
st.header("LLM chatbot")
|
|
|
|
|
|
|
|
|
|
|
|
with st.sidebar:
|
|
|
|
|
|
api_key = st.session_state.api_key = st.secrets["openai_apikey"]
|
|
base_url = st.session_state.base_url = os.environ.get("base_url")
|
|
client = OpenAI(api_key=api_key, base_url=base_url)
|
|
model_names = client.models.list()
|
|
|
|
modelname = st.selectbox("Select LLM model (Running on Intel® Gaudi®) ", model_names)
|
|
st.write(f"You selected: {modelname}")
|
|
st.button("Start New Chat", on_click=clear_chat)
|
|
|
|
try:
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = []
|
|
|
|
for message in st.session_state.messages:
|
|
with st.chat_message(message["role"]):
|
|
st.markdown(message["content"])
|
|
|
|
if prompt := st.chat_input("What is up?"):
|
|
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
with st.chat_message("user"):
|
|
st.markdown(prompt)
|
|
|
|
with st.chat_message("assistant"):
|
|
try:
|
|
stream = client.chat.completions.create(
|
|
model=modelname,
|
|
messages=[
|
|
{"role": m["role"], "content": m["content"]}
|
|
for m in st.session_state.messages
|
|
],
|
|
max_tokens=4096,
|
|
stream=True,
|
|
)
|
|
response = st.write_stream(stream)
|
|
except Exception as e:
|
|
st.error(f"An error occurred while generating the response: {e}")
|
|
response = "An error occurred while generating the response."
|
|
|
|
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
except KeyError as e:
|
|
st.error(f"Key error: {e}")
|
|
except Exception as e:
|
|
st.error(f"An unexpected error occurred: {e}") |