Spaces:
Running
Running
Update Space (evaluate main: 1a12c674)
Browse files- README.md +3 -4
- adversarial_glue.py +30 -60
README.md
CHANGED
@@ -38,7 +38,7 @@ mc_results, = suite.run("gpt2")
|
|
38 |
|
39 |
The output of the metric depends on the GLUE subset chosen, consisting of a dictionary that contains one or several of the following metrics:
|
40 |
|
41 |
-
`accuracy`: the proportion of correct predictions among the total number of cases processed, with a range between 0 and 1 (see [accuracy](https://huggingface.co/metrics/accuracy) for more information).
|
42 |
|
43 |
|
44 |
### Values from popular papers
|
@@ -47,14 +47,14 @@ The [original GLUE paper](https://huggingface.co/datasets/glue) reported average
|
|
47 |
|
48 |
For more recent model performance, see the [dataset leaderboard](https://paperswithcode.com/dataset/glue).
|
49 |
|
50 |
-
## Examples
|
51 |
|
52 |
For full example see [HF Evaluate Adversarial Attacks.ipynb](https://github.com/IntelAI/evaluate/blob/develop/notebooks/HF%20Evaluate%20Adversarial%20Attacks.ipynb)
|
53 |
|
54 |
## Limitations and bias
|
55 |
This metric works only with datasets that have the same format as the [GLUE dataset](https://huggingface.co/datasets/glue).
|
56 |
|
57 |
-
While the GLUE dataset is meant to represent "General Language Understanding", the tasks represented in it are not necessarily representative of language understanding, and should not be interpreted as such.
|
58 |
|
59 |
## Citation
|
60 |
|
@@ -66,4 +66,3 @@ While the GLUE dataset is meant to represent "General Language Understanding", t
|
|
66 |
year={2021}
|
67 |
}
|
68 |
```
|
69 |
-
|
|
|
38 |
|
39 |
The output of the metric depends on the GLUE subset chosen, consisting of a dictionary that contains one or several of the following metrics:
|
40 |
|
41 |
+
`accuracy`: the proportion of correct predictions among the total number of cases processed, with a range between 0 and 1 (see [accuracy](https://huggingface.co/metrics/accuracy) for more information).
|
42 |
|
43 |
|
44 |
### Values from popular papers
|
|
|
47 |
|
48 |
For more recent model performance, see the [dataset leaderboard](https://paperswithcode.com/dataset/glue).
|
49 |
|
50 |
+
## Examples
|
51 |
|
52 |
For full example see [HF Evaluate Adversarial Attacks.ipynb](https://github.com/IntelAI/evaluate/blob/develop/notebooks/HF%20Evaluate%20Adversarial%20Attacks.ipynb)
|
53 |
|
54 |
## Limitations and bias
|
55 |
This metric works only with datasets that have the same format as the [GLUE dataset](https://huggingface.co/datasets/glue).
|
56 |
|
57 |
+
While the GLUE dataset is meant to represent "General Language Understanding", the tasks represented in it are not necessarily representative of language understanding, and should not be interpreted as such.
|
58 |
|
59 |
## Citation
|
60 |
|
|
|
66 |
year={2021}
|
67 |
}
|
68 |
```
|
|
adversarial_glue.py
CHANGED
@@ -1,7 +1,8 @@
|
|
|
|
|
|
1 |
from evaluate.evaluation_suite import SubTask
|
2 |
from evaluate.visualization import radar_plot
|
3 |
|
4 |
-
from intel_evaluate_extension.evaluation_suite.model_card_suite import ModelCardSuiteResults
|
5 |
|
6 |
_HEADER = "GLUE/AdvGlue Evaluation Results"
|
7 |
|
@@ -27,11 +28,8 @@ class Suite(ModelCardSuiteResults):
|
|
27 |
"input_column": "sentence",
|
28 |
"label_column": "label",
|
29 |
"config_name": "sst2",
|
30 |
-
"label_mapping": {
|
31 |
-
|
32 |
-
"LABEL_1": 1.0
|
33 |
-
}
|
34 |
-
}
|
35 |
),
|
36 |
SubTask(
|
37 |
task_type="text-classification",
|
@@ -43,29 +41,22 @@ class Suite(ModelCardSuiteResults):
|
|
43 |
"input_column": "sentence",
|
44 |
"label_column": "label",
|
45 |
"config_name": "sst2",
|
46 |
-
"label_mapping": {
|
47 |
-
|
48 |
-
"LABEL_1": 1.0
|
49 |
-
}
|
50 |
-
}
|
51 |
),
|
52 |
SubTask(
|
53 |
task_type="text-classification",
|
54 |
data="glue",
|
55 |
subset="qqp",
|
56 |
split="validation[:5]",
|
57 |
-
|
58 |
args_for_task={
|
59 |
"metric": "glue",
|
60 |
"input_column": "question1",
|
61 |
"second_input_column": "question2",
|
62 |
"label_column": "label",
|
63 |
"config_name": "qqp",
|
64 |
-
"label_mapping": {
|
65 |
-
|
66 |
-
"LABEL_1": 1
|
67 |
-
}
|
68 |
-
}
|
69 |
),
|
70 |
SubTask(
|
71 |
task_type="text-classification",
|
@@ -78,11 +69,8 @@ class Suite(ModelCardSuiteResults):
|
|
78 |
"second_input_column": "question2",
|
79 |
"label_column": "label",
|
80 |
"config_name": "qqp",
|
81 |
-
"label_mapping": {
|
82 |
-
|
83 |
-
"LABEL_1": 1
|
84 |
-
}
|
85 |
-
}
|
86 |
),
|
87 |
SubTask(
|
88 |
task_type="text-classification",
|
@@ -95,11 +83,8 @@ class Suite(ModelCardSuiteResults):
|
|
95 |
"second_input_column": "sentence",
|
96 |
"label_column": "label",
|
97 |
"config_name": "qnli",
|
98 |
-
"label_mapping": {
|
99 |
-
|
100 |
-
"LABEL_1": 1
|
101 |
-
}
|
102 |
-
}
|
103 |
),
|
104 |
SubTask(
|
105 |
task_type="text-classification",
|
@@ -112,11 +97,8 @@ class Suite(ModelCardSuiteResults):
|
|
112 |
"second_input_column": "sentence",
|
113 |
"label_column": "label",
|
114 |
"config_name": "qnli",
|
115 |
-
"label_mapping": {
|
116 |
-
|
117 |
-
"LABEL_1": 1
|
118 |
-
}
|
119 |
-
}
|
120 |
),
|
121 |
SubTask(
|
122 |
task_type="text-classification",
|
@@ -129,11 +111,8 @@ class Suite(ModelCardSuiteResults):
|
|
129 |
"second_input_column": "sentence2",
|
130 |
"label_column": "label",
|
131 |
"config_name": "rte",
|
132 |
-
"label_mapping": {
|
133 |
-
|
134 |
-
"LABEL_1": 1
|
135 |
-
}
|
136 |
-
}
|
137 |
),
|
138 |
SubTask(
|
139 |
task_type="text-classification",
|
@@ -146,11 +125,8 @@ class Suite(ModelCardSuiteResults):
|
|
146 |
"second_input_column": "sentence2",
|
147 |
"label_column": "label",
|
148 |
"config_name": "rte",
|
149 |
-
"label_mapping": {
|
150 |
-
|
151 |
-
"LABEL_1": 1
|
152 |
-
}
|
153 |
-
}
|
154 |
),
|
155 |
SubTask(
|
156 |
task_type="text-classification",
|
@@ -162,12 +138,8 @@ class Suite(ModelCardSuiteResults):
|
|
162 |
"input_column": "premise",
|
163 |
"second_input_column": "hypothesis",
|
164 |
"config_name": "mnli",
|
165 |
-
"label_mapping": {
|
166 |
-
|
167 |
-
"LABEL_1": 1,
|
168 |
-
"LABEL_2": 2
|
169 |
-
}
|
170 |
-
}
|
171 |
),
|
172 |
SubTask(
|
173 |
task_type="text-classification",
|
@@ -179,24 +151,22 @@ class Suite(ModelCardSuiteResults):
|
|
179 |
"input_column": "premise",
|
180 |
"second_input_column": "hypothesis",
|
181 |
"config_name": "mnli",
|
182 |
-
"label_mapping": {
|
183 |
-
|
184 |
-
"LABEL_1": 1,
|
185 |
-
"LABEL_2": 2
|
186 |
-
}
|
187 |
-
}
|
188 |
),
|
189 |
]
|
190 |
|
191 |
def process_results(self, results):
|
192 |
radar_data = [
|
193 |
-
{"accuracy " + result["task_name"].split("/")[-1]:
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
198 |
|
199 |
def plot_results(self, results, model_or_pipeline):
|
200 |
radar_data = self.process_results(results)
|
201 |
-
graphic = radar_plot(radar_data, [
|
202 |
return graphic
|
|
|
1 |
+
from intel_evaluate_extension.evaluation_suite.model_card_suite import ModelCardSuiteResults
|
2 |
+
|
3 |
from evaluate.evaluation_suite import SubTask
|
4 |
from evaluate.visualization import radar_plot
|
5 |
|
|
|
6 |
|
7 |
_HEADER = "GLUE/AdvGlue Evaluation Results"
|
8 |
|
|
|
28 |
"input_column": "sentence",
|
29 |
"label_column": "label",
|
30 |
"config_name": "sst2",
|
31 |
+
"label_mapping": {"LABEL_0": 0.0, "LABEL_1": 1.0},
|
32 |
+
},
|
|
|
|
|
|
|
33 |
),
|
34 |
SubTask(
|
35 |
task_type="text-classification",
|
|
|
41 |
"input_column": "sentence",
|
42 |
"label_column": "label",
|
43 |
"config_name": "sst2",
|
44 |
+
"label_mapping": {"LABEL_0": 0.0, "LABEL_1": 1.0},
|
45 |
+
},
|
|
|
|
|
|
|
46 |
),
|
47 |
SubTask(
|
48 |
task_type="text-classification",
|
49 |
data="glue",
|
50 |
subset="qqp",
|
51 |
split="validation[:5]",
|
|
|
52 |
args_for_task={
|
53 |
"metric": "glue",
|
54 |
"input_column": "question1",
|
55 |
"second_input_column": "question2",
|
56 |
"label_column": "label",
|
57 |
"config_name": "qqp",
|
58 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
59 |
+
},
|
|
|
|
|
|
|
60 |
),
|
61 |
SubTask(
|
62 |
task_type="text-classification",
|
|
|
69 |
"second_input_column": "question2",
|
70 |
"label_column": "label",
|
71 |
"config_name": "qqp",
|
72 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
73 |
+
},
|
|
|
|
|
|
|
74 |
),
|
75 |
SubTask(
|
76 |
task_type="text-classification",
|
|
|
83 |
"second_input_column": "sentence",
|
84 |
"label_column": "label",
|
85 |
"config_name": "qnli",
|
86 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
87 |
+
},
|
|
|
|
|
|
|
88 |
),
|
89 |
SubTask(
|
90 |
task_type="text-classification",
|
|
|
97 |
"second_input_column": "sentence",
|
98 |
"label_column": "label",
|
99 |
"config_name": "qnli",
|
100 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
101 |
+
},
|
|
|
|
|
|
|
102 |
),
|
103 |
SubTask(
|
104 |
task_type="text-classification",
|
|
|
111 |
"second_input_column": "sentence2",
|
112 |
"label_column": "label",
|
113 |
"config_name": "rte",
|
114 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
115 |
+
},
|
|
|
|
|
|
|
116 |
),
|
117 |
SubTask(
|
118 |
task_type="text-classification",
|
|
|
125 |
"second_input_column": "sentence2",
|
126 |
"label_column": "label",
|
127 |
"config_name": "rte",
|
128 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
129 |
+
},
|
|
|
|
|
|
|
130 |
),
|
131 |
SubTask(
|
132 |
task_type="text-classification",
|
|
|
138 |
"input_column": "premise",
|
139 |
"second_input_column": "hypothesis",
|
140 |
"config_name": "mnli",
|
141 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2},
|
142 |
+
},
|
|
|
|
|
|
|
|
|
143 |
),
|
144 |
SubTask(
|
145 |
task_type="text-classification",
|
|
|
151 |
"input_column": "premise",
|
152 |
"second_input_column": "hypothesis",
|
153 |
"config_name": "mnli",
|
154 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2},
|
155 |
+
},
|
|
|
|
|
|
|
|
|
156 |
),
|
157 |
]
|
158 |
|
159 |
def process_results(self, results):
|
160 |
radar_data = [
|
161 |
+
{"accuracy " + result["task_name"].split("/")[-1]: result["accuracy"] for result in results[::2]},
|
162 |
+
{
|
163 |
+
"accuracy " + result["task_name"].replace("adv_", "").split("/")[-1]: result["accuracy"]
|
164 |
+
for result in results[1::2]
|
165 |
+
},
|
166 |
+
]
|
167 |
+
return radar_plot(radar_data, ["GLUE", "AdvGLUE"])
|
168 |
|
169 |
def plot_results(self, results, model_or_pipeline):
|
170 |
radar_data = self.process_results(results)
|
171 |
+
graphic = radar_plot(radar_data, ["GLUE " + model_or_pipeline, "AdvGLUE " + model_or_pipeline])
|
172 |
return graphic
|