|
import json
|
|
import os
|
|
import re
|
|
from collections import defaultdict
|
|
from datetime import datetime, timedelta, timezone
|
|
|
|
import huggingface_hub
|
|
from huggingface_hub import ModelCard
|
|
from huggingface_hub.hf_api import ModelInfo
|
|
from transformers import AutoConfig
|
|
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
|
|
|
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
|
"""Checks if the model card and license exist and have been filled"""
|
|
try:
|
|
card = ModelCard.load(repo_id)
|
|
except huggingface_hub.utils.EntryNotFoundError:
|
|
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
|
|
|
|
|
if card.data.license is None:
|
|
if not ("license_name" in card.data and "license_link" in card.data):
|
|
return False, (
|
|
"License not found. Please add a license to your model card using the `license` metadata or a"
|
|
" `license_name`/`license_link` pair."
|
|
)
|
|
|
|
|
|
if len(card.text) < 200:
|
|
return False, "Please add a description to your model card, it is too short."
|
|
|
|
return True, ""
|
|
|
|
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
|
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
|
try:
|
|
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
|
if test_tokenizer:
|
|
try:
|
|
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
|
except ValueError as e:
|
|
return (
|
|
False,
|
|
f"uses a tokenizer which is not in a transformers release: {e}",
|
|
None
|
|
)
|
|
except Exception as e:
|
|
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
|
return True, None, config
|
|
|
|
except ValueError:
|
|
return (
|
|
False,
|
|
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
|
None
|
|
)
|
|
|
|
except Exception as e:
|
|
return False, "was not found on hub!", None
|
|
|
|
|
|
def get_model_size(model_info: ModelInfo, precision: str):
|
|
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
|
try:
|
|
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
|
except (AttributeError, TypeError):
|
|
return 0
|
|
|
|
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
|
model_size = size_factor * model_size
|
|
return model_size
|
|
|
|
def get_model_arch(model_info: ModelInfo):
|
|
"""Gets the model architecture from the configuration"""
|
|
return model_info.config.get("architectures", "Unknown")
|
|
|
|
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
|
"""Gather a list of already submitted models to avoid duplicates"""
|
|
depth = 1
|
|
file_names = []
|
|
users_to_submission_dates = defaultdict(list)
|
|
|
|
for root, _, files in os.walk(requested_models_dir):
|
|
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
|
if current_depth == depth:
|
|
for file in files:
|
|
if not file.endswith(".json"):
|
|
continue
|
|
with open(os.path.join(root, file), "r") as f:
|
|
info = json.load(f)
|
|
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
|
|
|
|
|
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
|
continue
|
|
organisation, _ = info["model"].split("/")
|
|
users_to_submission_dates[organisation].append(info["submitted_time"])
|
|
|
|
return set(file_names), users_to_submission_dates
|
|
|