Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from collections import defaultdict, deque | |
| import datetime | |
| import json | |
| import logging | |
| import time | |
| import torch | |
| import dinov2.distributed as distributed | |
| logger = logging.getLogger("dinov2") | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t", output_file=None): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| self.output_file = output_file | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append("{}: {}".format(name, str(meter))) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def dump_in_output_file(self, iteration, iter_time, data_time): | |
| if self.output_file is None or not distributed.is_main_process(): | |
| return | |
| dict_to_dump = dict( | |
| iteration=iteration, | |
| iter_time=iter_time, | |
| data_time=data_time, | |
| ) | |
| dict_to_dump.update({k: v.median for k, v in self.meters.items()}) | |
| with open(self.output_file, "a") as f: | |
| f.write(json.dumps(dict_to_dump) + "\n") | |
| pass | |
| def log_every(self, iterable, print_freq, header=None, n_iterations=None, start_iteration=0): | |
| i = start_iteration | |
| if not header: | |
| header = "" | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt="{avg:.6f}") | |
| data_time = SmoothedValue(fmt="{avg:.6f}") | |
| if n_iterations is None: | |
| n_iterations = len(iterable) | |
| space_fmt = ":" + str(len(str(n_iterations))) + "d" | |
| log_list = [ | |
| header, | |
| "[{0" + space_fmt + "}/{1}]", | |
| "eta: {eta}", | |
| "{meters}", | |
| "time: {time}", | |
| "data: {data}", | |
| ] | |
| if torch.cuda.is_available(): | |
| log_list += ["max mem: {memory:.0f}"] | |
| log_msg = self.delimiter.join(log_list) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == n_iterations - 1: | |
| self.dump_in_output_file(iteration=i, iter_time=iter_time.avg, data_time=data_time.avg) | |
| eta_seconds = iter_time.global_avg * (n_iterations - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| logger.info( | |
| log_msg.format( | |
| i, | |
| n_iterations, | |
| eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), | |
| data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB, | |
| ) | |
| ) | |
| else: | |
| logger.info( | |
| log_msg.format( | |
| i, | |
| n_iterations, | |
| eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), | |
| data=str(data_time), | |
| ) | |
| ) | |
| i += 1 | |
| end = time.time() | |
| if i >= n_iterations: | |
| break | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| logger.info("{} Total time: {} ({:.6f} s / it)".format(header, total_time_str, total_time / n_iterations)) | |
| class SmoothedValue: | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, num=1): | |
| self.deque.append(value) | |
| self.count += num | |
| self.total += value * num | |
| def synchronize_between_processes(self): | |
| """ | |
| Distributed synchronization of the metric | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not distributed.is_enabled(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") | |
| torch.distributed.barrier() | |
| torch.distributed.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value, | |
| ) | |