Spaces:
Sleeping
Sleeping
import pickle | |
import streamlit as st | |
import requests | |
# Set page title and sidebar properties | |
st.set_page_config(page_title="Insightly") | |
st.markdown( | |
""" | |
<style> | |
.image-container { | |
margin-bottom: 60px; | |
} | |
.sidebar-link { | |
display: flex; | |
justify-content: left; | |
font-size: 28px; | |
margin-top: 10px; /* Adjust margin-top value to control space on the top */ | |
margin-left: 20px; /* Adjust margin-left value to add space from the left */ | |
} | |
.vertical-space { | |
height: 20px; | |
} | |
.movie-title { | |
font-size: 18px; | |
font-weight: bold; | |
} | |
.row-padding { | |
padding-bottom: 40px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Sidebar contents | |
with st.sidebar: | |
st.image("https://i.ibb.co/bX6GdqG/insightly-wbg.png", use_column_width=True) | |
st.markdown("<p class='sidebar-link'>π <a href='https://insightly-csv-bot.hf.space/'> CSV Bot</a></p>", unsafe_allow_html=True) | |
st.markdown("<p class='sidebar-link'>π <a href='https://chandrakalagowda-demo2.hf.space/'> PDF Bot </a></p>", unsafe_allow_html=True) | |
st.markdown("<p class='sidebar-link'>πΈ <a href='https://insightly-frame-capturer.hf.space/'> Frame Capturer</a></p>", unsafe_allow_html=True) | |
st.markdown("<p class='sidebar-link'>πΌοΈ <a href='https://insightly-image-reader.hf.space/'> Image Reader</a></p>", unsafe_allow_html=True) | |
st.markdown("<div class='vertical-space'></div>", unsafe_allow_html=True) | |
def fetch_poster(movie_id): | |
url = "https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US".format(movie_id) | |
data = requests.get(url) | |
data = data.json() | |
poster_path = data['poster_path'] | |
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path | |
return full_path | |
def recommend(movie): | |
index = movies[movies['title'] == movie].index[0] | |
distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1]) | |
recommended_movie_names = [] | |
recommended_movie_posters = [] | |
for i in distances[1:6]: | |
# fetch the movie poster | |
movie_id = movies.iloc[i[0]].movie_id | |
recommended_movie_posters.append(fetch_poster(movie_id)) | |
recommended_movie_names.append(movies.iloc[i[0]].title) | |
return recommended_movie_names,recommended_movie_posters | |
st.title('Movie Recommender π¬') | |
# Provide the correct absolute paths to the pickled data | |
movie_list_path = "https://mega.nz/file/7Ak2HTyD#33YrguiOp2_YzJTWQE0MyrYWyajRMqEoQ6zw_l0znFk" | |
similarity_path = "https://mega.nz/file/XIs3HBDI#KbR1DVV-2RE6-lJ6suwpRDZ1IJUMZU3ebFxZUfHxkv0" | |
movies = pickle.load(open(movie_list_path, 'rb')) | |
similarity = pickle.load(open(similarity_path, 'rb')) | |
movies = pickle.load(open(movie_list_path, 'rb')) | |
similarity = pickle.load(open(similarity_path, 'rb')) | |
movie_list = movies['title'].values | |
selected_movie = st.selectbox( | |
"Type or select a movie from the dropdown", | |
movie_list | |
) | |
if st.button('Show Recommendation'): | |
recommended_movie_names, recommended_movie_posters = recommend(selected_movie) | |
# Create columns based on the number of recommended movies | |
num_recommendations = len(recommended_movie_names) | |
num_columns = 3 | |
num_rows = (num_recommendations + num_columns - 1) // num_columns # Calculate the number of rows required | |
# Create a list of columns | |
cols = [st.columns(num_columns) for _ in range(num_rows)] | |
# Loop through recommended movies and posters and display them in the columns | |
for i, movie_name in enumerate(recommended_movie_names): | |
col_index = i // num_columns | |
row_index = i % num_columns | |
cols[col_index][row_index].markdown(f"<span class='movie-title'>{movie_name}</span>", unsafe_allow_html=True) | |
cols[col_index][row_index].image(recommended_movie_posters[i]) | |
# Add padding between the rows | |
st.markdown("<br>", unsafe_allow_html=True) | |
st.write('<div class="row-padding"></div>', unsafe_allow_html=True) | |