Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import streamlit as st
|
3 |
+
import tempfile
|
4 |
+
import base64
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from openai import OpenAI
|
8 |
+
import assemblyai as aai
|
9 |
+
from moviepy.editor import *
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
+
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
|
17 |
+
OpenAI.api_key = os.getenv("OPENAI_API_KEY")
|
18 |
+
client = OpenAI()
|
19 |
+
|
20 |
+
def main():
|
21 |
+
st.title('Insightly Video Content Moderation')
|
22 |
+
|
23 |
+
# Video upload section
|
24 |
+
uploaded_video = st.file_uploader('Upload a video', type=["mp4", "avi", "mov"])
|
25 |
+
|
26 |
+
if uploaded_video is not None:
|
27 |
+
# Save the video to a temp file
|
28 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
29 |
+
tfile.write(uploaded_video.read())
|
30 |
+
video_file_path = tfile.name
|
31 |
+
tfile.close()
|
32 |
+
|
33 |
+
transcriber = aai.Transcriber()
|
34 |
+
transcript = transcriber.transcribe(tfile.name)
|
35 |
+
|
36 |
+
# Process the video and display frames in a grid layout
|
37 |
+
base64_frames = video_to_base64_frames(video_file_path)
|
38 |
+
display_frame_grid(base64_frames[::30]) # Display every 30th frame in a 3-column grid
|
39 |
+
|
40 |
+
st.write("Actions:") # Header for the actions/buttons section
|
41 |
+
|
42 |
+
# Creating four columns to align the buttons
|
43 |
+
col1, col2, col3, col4 = st.columns(4)
|
44 |
+
|
45 |
+
with col1:
|
46 |
+
if st.button("Description"):
|
47 |
+
st.session_state['description'] = generate_description(base64_frames) if 'description' not in st.session_state else st.session_state['description']
|
48 |
+
|
49 |
+
with col2:
|
50 |
+
if st.button("Frame Description"):
|
51 |
+
st.session_state['frame_description'] = generate_frame_description(base64_frames) if 'frame_description' not in st.session_state else st.session_state['frame_description']
|
52 |
+
|
53 |
+
with col3:
|
54 |
+
if st.button("Generate Transcript"):
|
55 |
+
st.session_state['transcript'] = transcript.text if 'transcript' not in st.session_state else st.session_state['transcript']
|
56 |
+
|
57 |
+
with col4:
|
58 |
+
if st.button("Category of Video"):
|
59 |
+
st.session_state['category'] = generate_category(base64_frames) if 'category' not in st.session_state else st.session_state['category']
|
60 |
+
|
61 |
+
# If any value exists in session state then display it
|
62 |
+
if 'description' in st.session_state and st.session_state['description']:
|
63 |
+
st.subheader("Video Description")
|
64 |
+
st.write(st.session_state['description'])
|
65 |
+
|
66 |
+
if 'frame_description' in st.session_state and st.session_state['frame_description']:
|
67 |
+
st.subheader("Frame Description")
|
68 |
+
st.write(st.session_state['frame_description'])
|
69 |
+
|
70 |
+
if 'transcript' in st.session_state and st.session_state['transcript']:
|
71 |
+
st.subheader("Video Transcript")
|
72 |
+
st.write(st.session_state['transcript'])
|
73 |
+
|
74 |
+
if 'category' in st.session_state and st.session_state['category']:
|
75 |
+
st.subheader("Video Category")
|
76 |
+
st.write(st.session_state['category'])
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
def video_to_base64_frames(video_file_path):
|
84 |
+
# Logic to extract all frames from the video and convert them to base64
|
85 |
+
video = cv2.VideoCapture(video_file_path)
|
86 |
+
base64_frames = []
|
87 |
+
|
88 |
+
while video.isOpened():
|
89 |
+
success, frame = video.read()
|
90 |
+
if not success:
|
91 |
+
break
|
92 |
+
|
93 |
+
_, buffer = cv2.imencode('.jpg', frame)
|
94 |
+
base64_frame = base64.b64encode(buffer).decode('utf-8')
|
95 |
+
base64_frames.append(base64_frame)
|
96 |
+
|
97 |
+
video.release()
|
98 |
+
return base64_frames
|
99 |
+
|
100 |
+
#########################################
|
101 |
+
#Generate Video description
|
102 |
+
def generate_description(base64_frames):
|
103 |
+
prompt_messages = [
|
104 |
+
{
|
105 |
+
"role": "user",
|
106 |
+
"content": [
|
107 |
+
"1. Generate a description for this sequence of video frames in about 90 words.\
|
108 |
+
Return the following : 1. List of objects in the video 2. Any restrictive content or sensitive content and if so which frame.",
|
109 |
+
*map(lambda x: {"image": x, "resize": 428}, base64_frames[0::30]),
|
110 |
+
],
|
111 |
+
},
|
112 |
+
]
|
113 |
+
response = client.chat.completions.create(
|
114 |
+
model="gpt-4-vision-preview",
|
115 |
+
messages=prompt_messages,
|
116 |
+
max_tokens=3000,
|
117 |
+
)
|
118 |
+
return response.choices[0].message.content
|
119 |
+
|
120 |
+
#Generate frame description
|
121 |
+
def generate_frame_description(base64_frames):
|
122 |
+
prompt_messages = [
|
123 |
+
{
|
124 |
+
"role": "user",
|
125 |
+
"content": [
|
126 |
+
"Describe what is happening in each frame.",
|
127 |
+
*map(lambda x: {"image": x, "resize": 428}, base64_frames[0::30]),
|
128 |
+
],
|
129 |
+
},
|
130 |
+
]
|
131 |
+
response = client.chat.completions.create(
|
132 |
+
model="gpt-4-vision-preview",
|
133 |
+
messages=prompt_messages,
|
134 |
+
max_tokens=3000,
|
135 |
+
)
|
136 |
+
return response.choices[0].message.content
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
#Generate Category of Video
|
141 |
+
def generate_category(base64_frames):
|
142 |
+
prompt_messages = [
|
143 |
+
{
|
144 |
+
"role": "user",
|
145 |
+
"content": [
|
146 |
+
"What category can this video be tagged to?",
|
147 |
+
*map(lambda x: {"image": x, "resize": 428}, base64_frames[0::30]),
|
148 |
+
],
|
149 |
+
},
|
150 |
+
]
|
151 |
+
response = client.chat.completions.create(
|
152 |
+
model="gpt-4-vision-preview",
|
153 |
+
messages=prompt_messages,
|
154 |
+
max_tokens=3000,
|
155 |
+
)
|
156 |
+
return response.choices[0].message.content
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
########################
|
162 |
+
def display_frame_grid(base64_frames):
|
163 |
+
cols_per_row = 3
|
164 |
+
n_frames = len(base64_frames)
|
165 |
+
for idx in range(0, n_frames, cols_per_row):
|
166 |
+
cols = st.columns(cols_per_row)
|
167 |
+
for col_index in range(cols_per_row):
|
168 |
+
frame_idx = idx + col_index
|
169 |
+
if frame_idx < n_frames:
|
170 |
+
with cols[col_index]:
|
171 |
+
frame = base64_frames[frame_idx]
|
172 |
+
st.image(base64.b64decode(frame), caption=f'Frame {frame_idx * 30 + 1}', width=200)
|
173 |
+
|
174 |
+
if __name__ == '__main__':
|
175 |
+
main()
|