shreyasiv commited on
Commit
7ac0c16
·
1 Parent(s): 77482e0

Upload 7 files

Browse files
Files changed (7) hide show
  1. app.py +62 -0
  2. data.csv +0 -0
  3. emb.py +80 -0
  4. get-pip.py +0 -0
  5. requirements.txt +77 -0
  6. setup.sh +38 -0
  7. tempfile +0 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tempfile import NamedTemporaryFile
2
+ from langchain.agents import create_csv_agent
3
+ from langchain.llms import OpenAI
4
+ from dotenv import load_dotenv
5
+ import os
6
+ import streamlit as st
7
+ import pandas as pd
8
+ from streamlit_chat import message
9
+ from langchain.embeddings.openai import OpenAIEmbeddings
10
+ from langchain.chat_models import ChatOpenAI
11
+ from langchain.chains import ConversationalRetrievalChain
12
+ from langchain.document_loaders.csv_loader import CSVLoader
13
+ from langchain.vectorstores import FAISS
14
+
15
+ def main():
16
+ load_dotenv()
17
+
18
+ # Load the OpenAI API key from the environment variable
19
+ api_key = os.getenv("OPENAI_API_KEY")
20
+ if api_key is None or api_key == "":
21
+ st.error("OPENAI_API_KEY is not set")
22
+ return
23
+
24
+ st.set_page_config(page_title="Insightly")
25
+ st.sidebar.image("/home/oem/Downloads/insightly_wbg.png", use_column_width=True)
26
+ st.header("Data Analysis 📈")
27
+
28
+ csv_files = st.file_uploader("Upload CSV files", type="csv", accept_multiple_files=True)
29
+ if csv_files:
30
+ llm = OpenAI(temperature=0)
31
+ user_input = st.text_input("Question here:")
32
+
33
+ # Iterate over each CSV file
34
+ for csv_file in csv_files:
35
+ with NamedTemporaryFile(delete=False) as f:
36
+ f.write(csv_file.getvalue())
37
+ f.flush()
38
+ df = pd.read_csv(f.name)
39
+
40
+ # Perform any necessary data preprocessing or feature engineering here
41
+ # You can modify the code based on your specific requirements
42
+
43
+ # Example: Accessing columns from the DataFrame
44
+ # column_data = df["column_name"]
45
+
46
+ # Example: Applying transformations or calculations to the data
47
+ # transformed_data = column_data.apply(lambda x: x * 2)
48
+
49
+ # Example: Using the preprocessed data with the OpenAI API
50
+ # llm_response = llm.predict(transformed_data)
51
+
52
+ if user_input:
53
+ # Pass the user input to the OpenAI agent for processing
54
+ agent = create_csv_agent(llm, f.name, verbose=True)
55
+ response = agent.run(user_input)
56
+
57
+ st.write(f"CSV File: {csv_file.name}")
58
+ st.write("Response:")
59
+ st.write(response)
60
+
61
+ if __name__ == "__main__":
62
+ main()
data.csv ADDED
The diff for this file is too large to render. See raw diff
 
emb.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+
3
+ # Set up the OpenAI API credentials
4
+ openai.api_key = "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"
5
+
6
+ # Code snippet
7
+ code = """
8
+ from tempfile import NamedTemporaryFile
9
+ from langchain.agents import create_csv_agent
10
+ from langchain.llms import OpenAI
11
+ from dotenv import load_dotenv
12
+ import os
13
+ import streamlit as st
14
+ import pandas as pd
15
+
16
+ def main():
17
+ load_dotenv()
18
+
19
+ # Load the OpenAI API key from the environment variable
20
+ api_key = os.getenv("OPENAI_API_KEY")
21
+ if api_key is None or api_key == "":
22
+ st.error("OPENAI_API_KEY is not set")
23
+ return
24
+
25
+ st.set_page_config(page_title="Insightly")
26
+ st.sidebar.image("/home/oem/Downloads/insightly_wbg.png", use_column_width=True)
27
+ st.header("Data Analysis 📈")
28
+
29
+ csv_files = st.file_uploader("Upload CSV files", type="csv", accept_multiple_files=True)
30
+ if csv_files:
31
+ llm = OpenAI(temperature=0)
32
+ user_input = st.text_input("Question here:")
33
+
34
+ # Iterate over each CSV file
35
+ for csv_file in csv_files:
36
+ with NamedTemporaryFile(delete=False) as f:
37
+ f.write(csv_file.getvalue())
38
+ f.flush()
39
+ df = pd.read_csv(f.name)
40
+
41
+ # Perform any necessary data preprocessing or feature engineering here
42
+ # You can modify the code based on your specific requirements
43
+
44
+ # Example: Accessing columns from the DataFrame
45
+ # column_data = df["column_name"]
46
+
47
+ # Example: Applying transformations or calculations to the data
48
+ # transformed_data = column_data.apply(lambda x: x * 2)
49
+
50
+ # Example: Using the preprocessed data with the OpenAI API
51
+ # llm_response = llm.predict(transformed_data)
52
+
53
+ if user_input:
54
+ # Pass the user input to the OpenAI agent for processing
55
+ agent = create_csv_agent(llm, f.name, verbose=True)
56
+ response = agent.run(user_input)
57
+
58
+ st.write(f"CSV File: {csv_file.name}")
59
+ st.write("Response:")
60
+ st.write(response)
61
+
62
+ if __name__ == "__main__":
63
+ main()
64
+ """
65
+
66
+ # Retrieve the embeddings
67
+ response = openai.Completion.create(
68
+ model="gpt-3.5-turbo",
69
+ documents=[code],
70
+ num_completions=1,
71
+ return_prompt=True,
72
+ return_sequences=False,
73
+ expand_prompt=False
74
+ )
75
+
76
+ # Extract the embeddings from the response
77
+ embeddings = response.choices[0].embedding
78
+
79
+ # Print the embeddings
80
+ print(embeddings)
get-pip.py ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiohttp==3.8.4
2
+ aiosignal==1.3.1
3
+ altair==5.0.1
4
+ async-timeout==4.0.2
5
+ attrs==23.1.0
6
+ blinker==1.6.2
7
+ cachetools==5.3.1
8
+ certifi==2023.5.7
9
+ charset-normalizer==3.1.0
10
+ click==8.1.3
11
+ Cython==0.29.35
12
+ dataclasses-json==0.5.8
13
+ decorator==5.1.1
14
+ filelock==3.12.2
15
+ frozenlist==1.3.3
16
+ fsspec==2023.6.0
17
+ gitdb==4.0.10
18
+ GitPython==3.1.31
19
+ greenlet==2.0.2
20
+ huggingface==0.0.1
21
+ huggingface-hub==0.15.1
22
+ idna==3.4
23
+ importlib-metadata==6.7.0
24
+ Jinja2==3.1.2
25
+ jsonschema==4.17.3
26
+ langchain==0.0.219
27
+ langchainplus-sdk==0.0.17
28
+ markdown-it-py==3.0.0
29
+ MarkupSafe==2.1.3
30
+ marshmallow==3.19.0
31
+ marshmallow-enum==1.5.1
32
+ mdurl==0.1.2
33
+ multidict==6.0.4
34
+ mypy-extensions==1.0.0
35
+ numexpr==2.8.4
36
+ numpy==1.25.0
37
+ openai==0.27.8
38
+ openapi-schema-pydantic==1.2.4
39
+ packaging==23.1
40
+ pandas==2.0.3
41
+ Pillow==9.5.0
42
+ protobuf==4.23.3
43
+ pyarrow==12.0.1
44
+ pydantic==1.10.9
45
+ pydeck==0.8.1b0
46
+ Pygments==2.15.1
47
+ Pympler==1.0.1
48
+ pyrsistent==0.19.3
49
+ python-dateutil==2.8.2
50
+ python-dotenv==1.0.0
51
+ pytz==2023.3
52
+ pytz-deprecation-shim==0.1.0.post0
53
+ PyYAML==6.0
54
+ regex==2023.6.3
55
+ requests==2.31.0
56
+ rich==13.4.2
57
+ safetensors==0.3.1
58
+ six==1.16.0
59
+ smmap==5.0.0
60
+ SQLAlchemy==2.0.17
61
+ streamlit==1.24.0
62
+ streamlit-chat==0.1.1
63
+ tabulate==0.9.0
64
+ tenacity==8.2.2
65
+ toml==0.10.2
66
+ toolz==0.12.0
67
+ tornado==6.3.2
68
+ tqdm==4.65.0
69
+ typing-inspect==0.9.0
70
+ typing_extensions==4.6.3
71
+ tzdata==2023.3
72
+ tzlocal==4.3.1
73
+ urllib3==2.0.3
74
+ validators==0.20.0
75
+ watchdog==3.0.0
76
+ yarl==1.9.2
77
+ zipp==3.15.0
setup.sh ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ def display_ui():
4
+ st.sidebar.image("/home/oem/Downloads/insightly_wbg.png", use_column_width=True)
5
+ st.header("Data Analysis 📈")
6
+
7
+ csv_files = st.file_uploader("Upload CSV files", type="csv", accept_multiple_files=True)
8
+ if csv_files:
9
+ llm = OpenAI(temperature=0)
10
+ user_input = st.text_input("Question here:")
11
+
12
+ # Iterate over each CSV file
13
+ for csv_file in csv_files:
14
+ with NamedTemporaryFile(delete=False) as f:
15
+ f.write(csv_file.getvalue())
16
+ f.flush()
17
+ df = pd.read_csv(f.name)
18
+
19
+ # Perform any necessary data preprocessing or feature engineering here
20
+ # You can modify the code based on your specific requirements
21
+
22
+ # Example: Accessing columns from the DataFrame
23
+ # column_data = df["column_name"]
24
+
25
+ # Example: Applying transformations or calculations to the data
26
+ # transformed_data = column_data.apply(lambda x: x * 2)
27
+
28
+ # Example: Using the preprocessed data with the OpenAI API
29
+ # llm_response = llm.predict(transformed_data)
30
+
31
+ if user_input:
32
+ # Pass the user input to the OpenAI agent for processing
33
+ agent = create_csv_agent(llm, f.name, verbose=True)
34
+ response = agent.run(user_input)
35
+
36
+ st.write(f"CSV File: {csv_file.name}")
37
+ st.write("Response:")
38
+ st.write(response)
tempfile ADDED
The diff for this file is too large to render. See raw diff