Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- Dockerfile +78 -0
- app.py +1332 -0
- config.json +1 -0
- requirements.txt +18 -0
- start.sh +3 -0
Dockerfile
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Base image with CUDA 12.1 and Ubuntu 22.04
|
| 2 |
+
FROM nvidia/cuda:12.1.1-base-ubuntu22.04
|
| 3 |
+
|
| 4 |
+
# Install Python 3.10 and essential dependencies
|
| 5 |
+
RUN apt-get update && \
|
| 6 |
+
apt-get install -y --no-install-recommends \
|
| 7 |
+
python3.10 \
|
| 8 |
+
python3.10-dev \
|
| 9 |
+
python3.10-distutils \
|
| 10 |
+
curl \
|
| 11 |
+
git \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
+
|
| 14 |
+
# Make Python 3.10 the default
|
| 15 |
+
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1
|
| 16 |
+
|
| 17 |
+
# Install pip for Python 3.10
|
| 18 |
+
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.10
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Install Ollama with GPU layers
|
| 22 |
+
ENV OLLAMA_GPU_LAYERS=100
|
| 23 |
+
RUN curl -fsSL https://ollama.com/install.sh | sh
|
| 24 |
+
|
| 25 |
+
# Set up application directory
|
| 26 |
+
WORKDIR /app
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# Configure environment variables (FROM YOUR ORIGINAL SETUP)
|
| 32 |
+
ENV HOME=/home/user \
|
| 33 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 34 |
+
# VECTOR_STORE_DIR=/app/vector_stores \
|
| 35 |
+
# EMBED_MODEL_PATH=/app/datas/bge_onnx \
|
| 36 |
+
PYTHONUNBUFFERED=1 \
|
| 37 |
+
GRADIO_SERVER_NAME="0.0.0.0" \
|
| 38 |
+
HF_HOME=/data/.huggingface \
|
| 39 |
+
HF_HUB_DISABLE_PROGRESS_BARS=1 \
|
| 40 |
+
OLLAMA_MODELS=/data/.ollama/models \
|
| 41 |
+
SYSTEM=spaces
|
| 42 |
+
|
| 43 |
+
# Set up a new user named "user" with user ID 1000
|
| 44 |
+
RUN useradd -m -u 1000 user
|
| 45 |
+
|
| 46 |
+
USER root
|
| 47 |
+
RUN mkdir -p /data && chown user:user /data
|
| 48 |
+
|
| 49 |
+
# Switch to the "user" user
|
| 50 |
+
WORKDIR /app
|
| 51 |
+
USER user
|
| 52 |
+
COPY --chown=user requirements.txt /app/
|
| 53 |
+
# Install Python dependencies
|
| 54 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
COPY --chown=user . /app
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# COPY --chown=user . $HOME/app
|
| 61 |
+
# RUN mkdir -p /data
|
| 62 |
+
# RUN chmod 777 /data
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# Verify CUDA and Python versions
|
| 66 |
+
# RUN python3 -c "import torch; print(f'PyTorch CUDA available: {torch.cuda.is_available()}')" && \
|
| 67 |
+
# python3 --version
|
| 68 |
+
|
| 69 |
+
# Expose ports for Ollama and Gradio
|
| 70 |
+
EXPOSE 11434 7860
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Copy and set permissions for start script
|
| 74 |
+
# COPY start.sh /app/start.sh
|
| 75 |
+
RUN chmod +x /app/start.sh
|
| 76 |
+
|
| 77 |
+
# Start services using the startup script
|
| 78 |
+
CMD ["/app/start.sh"]
|
app.py
ADDED
|
@@ -0,0 +1,1332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from llama_index.llms.ollama import Ollama
|
| 2 |
+
from llama_index.embeddings.huggingface_optimum import OptimumEmbedding
|
| 3 |
+
from llama_index.core import Settings
|
| 4 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
| 5 |
+
from llama_index.core.storage.chat_store import SimpleChatStore
|
| 6 |
+
from llama_index.core import VectorStoreIndex, StorageContext
|
| 7 |
+
from llama_index.vector_stores.duckdb import DuckDBVectorStore
|
| 8 |
+
from llama_index.core.llms import ChatMessage, MessageRole
|
| 9 |
+
import uuid
|
| 10 |
+
import os
|
| 11 |
+
import json
|
| 12 |
+
import nest_asyncio
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
import copy
|
| 15 |
+
import ollama
|
| 16 |
+
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 19 |
+
from gradio.themes import Base
|
| 20 |
+
from gradio.events import EditData
|
| 21 |
+
from huggingface_hub import whoami
|
| 22 |
+
import re
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
from llama_index.core.evaluation import FaithfulnessEvaluator
|
| 28 |
+
|
| 29 |
+
from huggingface_hub import snapshot_download
|
| 30 |
+
import html
|
| 31 |
+
import concurrent.futures
|
| 32 |
+
import time
|
| 33 |
+
|
| 34 |
+
nest_asyncio.apply()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
PERSISTENT_DIR = "/data"
|
| 38 |
+
|
| 39 |
+
FORCE_UPDATE_FLAG = False
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
VECTOR_STORE_DIR = "./vector_stores"
|
| 45 |
+
EMBED_MODEL_PATH = "./datas/bge_onnx"
|
| 46 |
+
CONFIG_PATH = "config.json"
|
| 47 |
+
|
| 48 |
+
DEFAULT_LLM = "Jatin19K/unsloth-q5_k_m-mistral-nemo-instruct-2407:latest"
|
| 49 |
+
DEFAULT_VECTOR_STORE = "ComFit"
|
| 50 |
+
|
| 51 |
+
CONVERSATION_HISTORY_PATH = "./conversation_history"
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
SYSTEM_PROMPT = (
|
| 55 |
+
"You are a helpful assistant which helps users to understand scientific knowledge "
|
| 56 |
+
"about biomechanics of injuries to human bodies."
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# HF required
|
| 61 |
+
EMBED_MODEL_PATH = os.path.join(PERSISTENT_DIR, "bge_onnx")
|
| 62 |
+
VECTOR_STORE_DIR = os.path.join(PERSISTENT_DIR, "vector_stores")
|
| 63 |
+
CONVERSATION_HISTORY_PATH = os.path.join(PERSISTENT_DIR, "conversation_history")
|
| 64 |
+
token = os.getenv("HF_TOKEN")
|
| 65 |
+
dataset_id = os.getenv("DATASET_ID")
|
| 66 |
+
|
| 67 |
+
def download_data_if_needed():
|
| 68 |
+
global FORCE_UPDATE_FLAG
|
| 69 |
+
|
| 70 |
+
if not os.path.exists(EMBED_MODEL_PATH) or not os.path.exists(VECTOR_STORE_DIR):
|
| 71 |
+
FORCE_UPDATE_FLAG = True
|
| 72 |
+
|
| 73 |
+
if FORCE_UPDATE_FLAG:
|
| 74 |
+
snapshot_download(
|
| 75 |
+
repo_id=dataset_id,
|
| 76 |
+
repo_type="dataset",
|
| 77 |
+
token=token,
|
| 78 |
+
local_dir=PERSISTENT_DIR
|
| 79 |
+
)
|
| 80 |
+
print("Data downloaded successfully.")
|
| 81 |
+
else:
|
| 82 |
+
print("Data exists.")
|
| 83 |
+
|
| 84 |
+
download_data_if_needed()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def process_text_with_think_tags(text):
|
| 90 |
+
# Check if the text contains think tags
|
| 91 |
+
think_pattern = r'<think>(.*?)</think>'
|
| 92 |
+
think_matches = re.findall(think_pattern, text, re.DOTALL)
|
| 93 |
+
|
| 94 |
+
if think_matches:
|
| 95 |
+
# There are think tags present
|
| 96 |
+
# Extract the content inside think tags
|
| 97 |
+
think_content = think_matches[0] # Taking the first think block
|
| 98 |
+
|
| 99 |
+
# Remove the think tags part from the original text
|
| 100 |
+
remaining_text = re.sub(think_pattern, '', text, flags=re.DOTALL).strip()
|
| 101 |
+
|
| 102 |
+
# Return both parts separately
|
| 103 |
+
return {
|
| 104 |
+
'has_two_parts': True,
|
| 105 |
+
'think_part': think_content,
|
| 106 |
+
'regular_part': remaining_text
|
| 107 |
+
}
|
| 108 |
+
else:
|
| 109 |
+
# No think tags, just one part
|
| 110 |
+
return {
|
| 111 |
+
'has_two_parts': False,
|
| 112 |
+
'full_text': text
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class VectorStoreManager:
|
| 119 |
+
def __init__(self):
|
| 120 |
+
self.vector_stores = self.initialize_vector_stores()
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def initialize_vector_stores(self):
|
| 124 |
+
"""Scan vector store directory for DuckDB files, supporting nested directories"""
|
| 125 |
+
vector_stores = {}
|
| 126 |
+
if os.path.exists(VECTOR_STORE_DIR):
|
| 127 |
+
# Add default store if it exists
|
| 128 |
+
comfit_path = os.path.join(VECTOR_STORE_DIR, f"{DEFAULT_VECTOR_STORE}.duckdb")
|
| 129 |
+
if os.path.exists(comfit_path):
|
| 130 |
+
vector_stores[DEFAULT_VECTOR_STORE] = {
|
| 131 |
+
"path": comfit_path,
|
| 132 |
+
"display_name": DEFAULT_VECTOR_STORE,
|
| 133 |
+
"data": DuckDBVectorStore.from_local(comfit_path)
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
# Scan for .duckdb files in root directory and subdirectories
|
| 137 |
+
for root, dirs, files in os.walk(VECTOR_STORE_DIR):
|
| 138 |
+
for file in files:
|
| 139 |
+
if file.endswith(".duckdb") and file != f"{DEFAULT_VECTOR_STORE}.duckdb":
|
| 140 |
+
# Skip the default store since we've already handled it
|
| 141 |
+
if root == VECTOR_STORE_DIR and file == f"{DEFAULT_VECTOR_STORE}.duckdb":
|
| 142 |
+
continue
|
| 143 |
+
|
| 144 |
+
# Get the full path to the file
|
| 145 |
+
file_path = os.path.join(root, file)
|
| 146 |
+
|
| 147 |
+
# Calculate store_name: combine category and subcategory
|
| 148 |
+
rel_path = os.path.relpath(file_path, VECTOR_STORE_DIR)
|
| 149 |
+
path_parts = rel_path.split(os.sep)
|
| 150 |
+
|
| 151 |
+
if len(path_parts) == 1:
|
| 152 |
+
# Files in the root directory
|
| 153 |
+
store_name = path_parts[0][:-7] # Remove .duckdb
|
| 154 |
+
display_name = store_name
|
| 155 |
+
else:
|
| 156 |
+
# Files in subdirectories
|
| 157 |
+
category = path_parts[0]
|
| 158 |
+
file_name = path_parts[-1][:-7] # Remove .duckdb
|
| 159 |
+
store_name = f"{category}_{file_name}"
|
| 160 |
+
display_name = f"{category} - {file_name}"
|
| 161 |
+
|
| 162 |
+
vector_stores[store_name] = {
|
| 163 |
+
"path": file_path,
|
| 164 |
+
"display_name": display_name,
|
| 165 |
+
"data": DuckDBVectorStore.from_local(file_path)
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
return vector_stores
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def get_vector_store_data(self, store_name):
|
| 172 |
+
"""Get the actual vector store data by store name"""
|
| 173 |
+
return self.vector_stores[store_name]["data"]
|
| 174 |
+
|
| 175 |
+
def get_vector_store_by_display_name(self, display_name):
|
| 176 |
+
"""Find a vector store by its display name"""
|
| 177 |
+
for name, store_info in self.vector_stores.items():
|
| 178 |
+
if store_info["display_name"] == display_name:
|
| 179 |
+
return self.vector_stores[name]["data"]
|
| 180 |
+
return None
|
| 181 |
+
|
| 182 |
+
def get_all_store_names(self):
|
| 183 |
+
"""Get all vector store names"""
|
| 184 |
+
return list(self.vector_stores.keys())
|
| 185 |
+
|
| 186 |
+
def get_all_display_names(self):
|
| 187 |
+
"""Get all display names as a list"""
|
| 188 |
+
return [store_info["display_name"] for store_info in self.vector_stores.values()]
|
| 189 |
+
|
| 190 |
+
def get_display_name(self, store_name):
|
| 191 |
+
"""Get display name for a store name"""
|
| 192 |
+
return self.vector_stores[store_name]["display_name"]
|
| 193 |
+
|
| 194 |
+
def get_name_display_pairs(self):
|
| 195 |
+
"""Get list of (display_name, store_name) tuples for UI dropdowns"""
|
| 196 |
+
return [(v["display_name"], k) for k, v in self.vector_stores.items()]
|
| 197 |
+
|
| 198 |
+
# Create a global instance
|
| 199 |
+
vector_store_manager = VectorStoreManager()
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class ComFitChatbot:
|
| 204 |
+
def __init__(self):
|
| 205 |
+
self.initialize()
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def initialize(self):
|
| 209 |
+
self.session_manager = SessionManager()
|
| 210 |
+
self.embed_model = OptimumEmbedding(folder_name=EMBED_MODEL_PATH)
|
| 211 |
+
Settings.embed_model = self.embed_model
|
| 212 |
+
self.vector_stores = self.initialize_vector_store()
|
| 213 |
+
|
| 214 |
+
self.config = self._load_config()
|
| 215 |
+
self.llm_options = self._initialize_models()
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def get_user_data(self, user_id):
|
| 220 |
+
return user_id
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def _load_config(self):
|
| 227 |
+
"""Load model configuration from JSON file"""
|
| 228 |
+
try:
|
| 229 |
+
with open(CONFIG_PATH, 'r') as f:
|
| 230 |
+
return json.load(f)
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"Error loading config: {e}")
|
| 233 |
+
return {"models": []}
|
| 234 |
+
|
| 235 |
+
def _initialize_models(self):
|
| 236 |
+
"""Initialize and verify all models from config"""
|
| 237 |
+
config_models = self.config.get("models", [])
|
| 238 |
+
available_models = {}
|
| 239 |
+
|
| 240 |
+
# Get currently available Ollama models
|
| 241 |
+
try:
|
| 242 |
+
current_models = {m['name']: m['name'] for m in ollama.list()['models']}
|
| 243 |
+
print(current_models)
|
| 244 |
+
except Exception as e:
|
| 245 |
+
print(f"Error fetching current models: {e}")
|
| 246 |
+
current_models = {}
|
| 247 |
+
|
| 248 |
+
# Check each configured model
|
| 249 |
+
for model_name in config_models:
|
| 250 |
+
if model_name not in current_models:
|
| 251 |
+
print(f"Model {model_name} not found locally. Attempting to pull...")
|
| 252 |
+
try:
|
| 253 |
+
ollama.pull(model_name)
|
| 254 |
+
available_models[model_name] = model_name
|
| 255 |
+
print(f"Successfully pulled model {model_name}")
|
| 256 |
+
except Exception as e:
|
| 257 |
+
print(f"Error pulling model {model_name}: {e}")
|
| 258 |
+
continue
|
| 259 |
+
else:
|
| 260 |
+
available_models[model_name] = current_models[model_name]
|
| 261 |
+
|
| 262 |
+
return available_models
|
| 263 |
+
|
| 264 |
+
def get_available_models(self):
|
| 265 |
+
"""Return dictionary of available models"""
|
| 266 |
+
return self.available_models
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def initialize_vector_store(self):
|
| 270 |
+
"""Scan vector store directory for DuckDB files, supporting nested directories"""
|
| 271 |
+
vector_stores = {}
|
| 272 |
+
if os.path.exists(VECTOR_STORE_DIR):
|
| 273 |
+
# Add default store if it exists
|
| 274 |
+
comfit_path = os.path.join(VECTOR_STORE_DIR, f"{DEFAULT_VECTOR_STORE}.duckdb")
|
| 275 |
+
if os.path.exists(comfit_path):
|
| 276 |
+
vector_stores[DEFAULT_VECTOR_STORE] = {
|
| 277 |
+
"path": comfit_path,
|
| 278 |
+
"display_name": DEFAULT_VECTOR_STORE,
|
| 279 |
+
"data": DuckDBVectorStore.from_local(comfit_path)
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
# Scan for .duckdb files in root directory and subdirectories
|
| 283 |
+
for root, dirs, files in os.walk(VECTOR_STORE_DIR):
|
| 284 |
+
for file in files:
|
| 285 |
+
if file.endswith(".duckdb") and file != f"{DEFAULT_VECTOR_STORE}.duckdb":
|
| 286 |
+
# Skip the default store since we've already handled it
|
| 287 |
+
if root == VECTOR_STORE_DIR and file == f"{DEFAULT_VECTOR_STORE}.duckdb":
|
| 288 |
+
continue
|
| 289 |
+
|
| 290 |
+
# Get the full path to the file
|
| 291 |
+
file_path = os.path.join(root, file)
|
| 292 |
+
|
| 293 |
+
# Calculate store_name: combine category and subcategory
|
| 294 |
+
rel_path = os.path.relpath(file_path, VECTOR_STORE_DIR)
|
| 295 |
+
path_parts = rel_path.split(os.sep)
|
| 296 |
+
|
| 297 |
+
if len(path_parts) == 1:
|
| 298 |
+
# Files in the root directory
|
| 299 |
+
store_name = path_parts[0][:-7] # Remove .duckdb
|
| 300 |
+
display_name = store_name
|
| 301 |
+
else:
|
| 302 |
+
# Files in subdirectories
|
| 303 |
+
category = path_parts[0]
|
| 304 |
+
file_name = path_parts[-1][:-7] # Remove .duckdb
|
| 305 |
+
store_name = f"{category}_{file_name}"
|
| 306 |
+
display_name = f"{category} - {file_name}"
|
| 307 |
+
|
| 308 |
+
vector_stores[store_name] = {
|
| 309 |
+
"path": file_path,
|
| 310 |
+
"display_name": display_name,
|
| 311 |
+
"data": DuckDBVectorStore.from_local(file_path)
|
| 312 |
+
}
|
| 313 |
+
|
| 314 |
+
return vector_stores
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def get_vector_store(self, vector_store_name):
|
| 318 |
+
return self.vector_stores[vector_store_name]["data"]
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
class comfitChatEngine:
|
| 322 |
+
"""
|
| 323 |
+
Manages the core components needed for chat functionality with RAG.
|
| 324 |
+
Handles LLM, vector store, memory, chat store, and indexes.
|
| 325 |
+
"""
|
| 326 |
+
|
| 327 |
+
def __init__(self, user_id=None, llm_name=None, vector_store_name=None):
|
| 328 |
+
"""Initialize the chat engine with all necessary components"""
|
| 329 |
+
self.user_id = user_id
|
| 330 |
+
self.llm = None
|
| 331 |
+
self.llm_name = llm_name
|
| 332 |
+
self.vector_store = None
|
| 333 |
+
self.vector_store_name = vector_store_name
|
| 334 |
+
self.storage_context = None
|
| 335 |
+
self.index = None
|
| 336 |
+
self.chat_store = None
|
| 337 |
+
self.memory = None
|
| 338 |
+
self.chat_engine = None
|
| 339 |
+
self.rebuild_chat_engine_flag = True
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
# Conversation metadata management
|
| 343 |
+
self.convs_metadata = {}
|
| 344 |
+
self.current_conv_id = None
|
| 345 |
+
|
| 346 |
+
if user_id:
|
| 347 |
+
self.initialize_chat_store()
|
| 348 |
+
self.initialize_convs_metadata()
|
| 349 |
+
|
| 350 |
+
# Set initial components if provided
|
| 351 |
+
if llm_name:
|
| 352 |
+
self.set_llm(llm_name)
|
| 353 |
+
|
| 354 |
+
if vector_store_name:
|
| 355 |
+
self.set_vector_store(vector_store_name)
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
def initialize_convs_metadata(self):
|
| 360 |
+
print(f"Initializing convs metadata for user {self.user_id}")
|
| 361 |
+
self.convs_metadata_file_path = os.path.join(CONVERSATION_HISTORY_PATH, self.user_id, f"{self.user_id}_metadata.json")
|
| 362 |
+
self.sorted_conversation_list = []
|
| 363 |
+
self.get_convs_metadata()
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
def get_convs_metadata(self):
|
| 368 |
+
if os.path.exists(self.convs_metadata_file_path):
|
| 369 |
+
with open(self.convs_metadata_file_path, "r") as f:
|
| 370 |
+
self.convs_metadata = json.load(f)
|
| 371 |
+
self.sorted_conversation_list = self.get_sorted_conversation_list()
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def set_current_conv_id(self, input_value, type="index"):
|
| 377 |
+
|
| 378 |
+
if len(self.sorted_conversation_list) == 0:
|
| 379 |
+
self.current_conv_id = None
|
| 380 |
+
self.rebuild_chat_engine_flag = True
|
| 381 |
+
return
|
| 382 |
+
|
| 383 |
+
if type == "index" and self.current_conv_id != self.sorted_conversation_list[input_value]:
|
| 384 |
+
self.current_conv_id = self.sorted_conversation_list[input_value]
|
| 385 |
+
self.rebuild_chat_engine_flag = True
|
| 386 |
+
elif type == "id" and self.current_conv_id != input_value:
|
| 387 |
+
self.current_conv_id = input_value
|
| 388 |
+
self.rebuild_chat_engine_flag = True
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
def get_sorted_conversation_list(self):
|
| 393 |
+
"""
|
| 394 |
+
Returns a list of conversation IDs sorted by update time,
|
| 395 |
+
with the most recently updated conversations first.
|
| 396 |
+
"""
|
| 397 |
+
# Create a list of (conv_id, updated_at) tuples
|
| 398 |
+
conv_with_timestamps = []
|
| 399 |
+
|
| 400 |
+
for conv_id, metadata in self.convs_metadata.items():
|
| 401 |
+
# Use updated_at timestamp for sorting
|
| 402 |
+
if "updated_at" in metadata:
|
| 403 |
+
# Convert the ISO timestamp string to datetime object for comparison
|
| 404 |
+
update_time = datetime.fromisoformat(metadata["updated_at"])
|
| 405 |
+
conv_with_timestamps.append((conv_id, update_time))
|
| 406 |
+
|
| 407 |
+
# Sort by timestamp (descending order - newest first)
|
| 408 |
+
sorted_convs = sorted(conv_with_timestamps, key=lambda x: x[1], reverse=True)
|
| 409 |
+
|
| 410 |
+
# Return just the conversation IDs in the sorted order
|
| 411 |
+
return [conv_id for conv_id, _ in sorted_convs]
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def get_sorted_conversation_list_for_ui(self):
|
| 415 |
+
new_list = []
|
| 416 |
+
for item in self.sorted_conversation_list:
|
| 417 |
+
new_list.append([self.convs_metadata[item]["title"]])
|
| 418 |
+
return new_list
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
def update_convs_metadata(self, conv_id, title=None, create_flag=False):
|
| 422 |
+
current_time = datetime.now().isoformat()
|
| 423 |
+
if title is not None:
|
| 424 |
+
self.convs_metadata[conv_id].update({"title":title})
|
| 425 |
+
self.convs_metadata[conv_id].update({"updated_at":current_time, "llm_name": self.llm_name, "vector_store_name": self.vector_store_name})
|
| 426 |
+
|
| 427 |
+
self.sorted_conversation_list = self.get_sorted_conversation_list()
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def set_llm(self, llm_name):
|
| 432 |
+
|
| 433 |
+
self.llm = Ollama(
|
| 434 |
+
model=llm_name,
|
| 435 |
+
request_timeout=120,
|
| 436 |
+
temperature=0.3
|
| 437 |
+
)
|
| 438 |
+
self.set_rebuild_chat_engine_flag(True)
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
self.llm_name = llm_name
|
| 442 |
+
if self.current_conv_id:
|
| 443 |
+
self.convs_metadata[self.current_conv_id].update({"llm_name":self.llm_name})
|
| 444 |
+
|
| 445 |
+
return self.llm
|
| 446 |
+
|
| 447 |
+
def set_vector_store(self, vector_store_name):
|
| 448 |
+
|
| 449 |
+
self.vector_store = vector_store_manager.get_vector_store_by_display_name(vector_store_name)
|
| 450 |
+
|
| 451 |
+
if self.vector_store:
|
| 452 |
+
self.initialize_index()
|
| 453 |
+
self.set_rebuild_chat_engine_flag(True)
|
| 454 |
+
|
| 455 |
+
self.vector_store_name = vector_store_name
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
if self.current_conv_id:
|
| 459 |
+
self.convs_metadata[self.current_conv_id].update({"vector_store_name":self.vector_store_name})
|
| 460 |
+
|
| 461 |
+
return self.vector_store
|
| 462 |
+
|
| 463 |
+
def initialize_index(self):
|
| 464 |
+
"""Initialize the index using the current vector store"""
|
| 465 |
+
if not self.vector_store:
|
| 466 |
+
raise ValueError("Vector store must be set before initializing index")
|
| 467 |
+
|
| 468 |
+
self.storage_context = StorageContext.from_defaults(vector_store=self.vector_store)
|
| 469 |
+
self.index = VectorStoreIndex.from_vector_store(
|
| 470 |
+
vector_store=self.vector_store,
|
| 471 |
+
storage_context=self.storage_context
|
| 472 |
+
)
|
| 473 |
+
return self.index
|
| 474 |
+
|
| 475 |
+
def initialize_chat_store(self):
|
| 476 |
+
"""Initialize the chat store for the user"""
|
| 477 |
+
print(f"Initializing chat store for user {self.user_id}")
|
| 478 |
+
|
| 479 |
+
chat_store_file_path = os.path.join(CONVERSATION_HISTORY_PATH, self.user_id, f"{self.user_id}.json")
|
| 480 |
+
|
| 481 |
+
# Ensure directory exists
|
| 482 |
+
os.makedirs(os.path.dirname(chat_store_file_path), exist_ok=True)
|
| 483 |
+
|
| 484 |
+
# Create or load chat store
|
| 485 |
+
if not os.path.exists(chat_store_file_path):
|
| 486 |
+
self.chat_store = SimpleChatStore()
|
| 487 |
+
self.chat_store.persist(persist_path=chat_store_file_path)
|
| 488 |
+
else:
|
| 489 |
+
self.chat_store = SimpleChatStore.from_persist_path(chat_store_file_path)
|
| 490 |
+
|
| 491 |
+
self.chat_store_file_path = chat_store_file_path
|
| 492 |
+
|
| 493 |
+
return self.chat_store
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
def initialize_memory(self, conversation_id=None):
|
| 497 |
+
"""Initialize or reinitialize memory with specified conversation ID"""
|
| 498 |
+
if not self.chat_store:
|
| 499 |
+
raise ValueError("Chat store must be initialized before memory")
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
print(f"Initializing memory for conversation {conversation_id}")
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
self.memory = ChatMemoryBuffer.from_defaults(
|
| 506 |
+
token_limit=3000,
|
| 507 |
+
chat_store=self.chat_store,
|
| 508 |
+
chat_store_key=conversation_id
|
| 509 |
+
)
|
| 510 |
+
return self.memory
|
| 511 |
+
|
| 512 |
+
def build_chat_engine(self, conversation_id=None):
|
| 513 |
+
"""Build the chat engine with all components"""
|
| 514 |
+
if not all([self.llm, self.index, self.chat_store]):
|
| 515 |
+
raise ValueError("LLM, index, and chat store must be set before building chat engine")
|
| 516 |
+
|
| 517 |
+
# Initialize or update memory with conversation ID
|
| 518 |
+
# if conversation_id and self.current_conv_id != conversation_id:
|
| 519 |
+
self.initialize_memory(conversation_id)
|
| 520 |
+
self.current_conv_id = conversation_id
|
| 521 |
+
|
| 522 |
+
# Default system prompt if none provided
|
| 523 |
+
|
| 524 |
+
# Create the chat engine
|
| 525 |
+
self.chat_engine = self.index.as_chat_engine(
|
| 526 |
+
chat_mode="context",
|
| 527 |
+
llm=self.llm,
|
| 528 |
+
memory=self.memory,
|
| 529 |
+
system_prompt=SYSTEM_PROMPT
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
self.set_rebuild_chat_engine_flag(False)
|
| 533 |
+
return self.chat_engine
|
| 534 |
+
|
| 535 |
+
def save_chat_history(self):
|
| 536 |
+
"""Save chat history to file"""
|
| 537 |
+
if self.chat_store and hasattr(self, 'chat_store_file_path'):
|
| 538 |
+
self.chat_store.persist(persist_path=self.chat_store_file_path)
|
| 539 |
+
|
| 540 |
+
def add_message(self, conversation_id, message):
|
| 541 |
+
"""Add a message to the chat history"""
|
| 542 |
+
if self.chat_store:
|
| 543 |
+
self.chat_store.add_message(conversation_id, message)
|
| 544 |
+
|
| 545 |
+
def get_chat_history(self, conversation_id):
|
| 546 |
+
"""Get chat history for a specific conversation"""
|
| 547 |
+
if conversation_id is None:
|
| 548 |
+
return []
|
| 549 |
+
if self.chat_store:
|
| 550 |
+
return self.chat_store.to_dict()["store"][conversation_id]
|
| 551 |
+
return []
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
def get_chat_history_for_ui(self, conversation_id):
|
| 555 |
+
"""Get chat history for a specific conversation"""
|
| 556 |
+
if conversation_id is None:
|
| 557 |
+
return []
|
| 558 |
+
if self.chat_store:
|
| 559 |
+
conv_data = self.chat_store.to_dict()["store"][conversation_id]
|
| 560 |
+
|
| 561 |
+
conv_data_for_ui = []
|
| 562 |
+
for item in conv_data:
|
| 563 |
+
if item["role"] == "user":
|
| 564 |
+
conv_data_for_ui.append(item)
|
| 565 |
+
else:
|
| 566 |
+
|
| 567 |
+
content = item["content"]
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
time_str = None
|
| 571 |
+
if "time" in item["additional_kwargs"]:
|
| 572 |
+
elapsed_time = item["additional_kwargs"]["time"]
|
| 573 |
+
time_str = f"\n\n[Total time: {elapsed_time:.2f}s]"
|
| 574 |
+
|
| 575 |
+
processed_answer_dict = process_text_with_think_tags(content)
|
| 576 |
+
|
| 577 |
+
if processed_answer_dict["has_two_parts"]:
|
| 578 |
+
think_content = processed_answer_dict["think_part"]
|
| 579 |
+
conv_data_for_ui.append({"role": "assistant", "content": think_content, "metadata":{"title":"Thinking...", "status":"done"}})
|
| 580 |
+
remaining_text = processed_answer_dict["regular_part"]
|
| 581 |
+
if time_str:
|
| 582 |
+
remaining_text += time_str
|
| 583 |
+
conv_data_for_ui.append({"role": "assistant", "content": remaining_text})
|
| 584 |
+
else:
|
| 585 |
+
item_copy = copy.deepcopy(item)
|
| 586 |
+
if time_str:
|
| 587 |
+
item_copy["content"] += time_str
|
| 588 |
+
conv_data_for_ui.append(item_copy)
|
| 589 |
+
return conv_data_for_ui
|
| 590 |
+
|
| 591 |
+
return []
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
def set_rebuild_chat_engine_flag(self, flag):
|
| 595 |
+
self.rebuild_chat_engine_flag = flag
|
| 596 |
+
|
| 597 |
+
def chat(self, message, conversation_id=None):
|
| 598 |
+
|
| 599 |
+
start_time = time.time()
|
| 600 |
+
create_flag = False
|
| 601 |
+
if conversation_id is None:
|
| 602 |
+
conversation_id = self.create_conversation(message=message)
|
| 603 |
+
create_flag = True
|
| 604 |
+
print(f"Created new conversation {conversation_id}")
|
| 605 |
+
self.set_rebuild_chat_engine_flag(True)
|
| 606 |
+
elif self.current_conv_id != conversation_id:
|
| 607 |
+
self.set_rebuild_chat_engine_flag(True)
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
if self.rebuild_chat_engine_flag:
|
| 612 |
+
self.chat_engine = self.build_chat_engine(conversation_id)
|
| 613 |
+
self.rebuild_chat_engine_flag = False
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
# Get response
|
| 617 |
+
response = self.chat_engine.chat(message)
|
| 618 |
+
|
| 619 |
+
# answer = response.response
|
| 620 |
+
|
| 621 |
+
elapsed_time = time.time() - start_time
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
answer_dict = self.chat_store.get_messages(conversation_id)[-1].dict()
|
| 626 |
+
answer_dict['additional_kwargs'].update({"time":elapsed_time})
|
| 627 |
+
new_msg = ChatMessage.model_validate(answer_dict)
|
| 628 |
+
self.chat_store.delete_message(conversation_id, -1)
|
| 629 |
+
self.chat_store.add_message(conversation_id, new_msg)
|
| 630 |
+
|
| 631 |
+
self.update_convs_metadata(conversation_id, create_flag=create_flag)
|
| 632 |
+
|
| 633 |
+
self.save_metadata()
|
| 634 |
+
|
| 635 |
+
self.save_chat_history()
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
return response
|
| 639 |
+
|
| 640 |
+
def create_conversation(self, message=None):
|
| 641 |
+
"""
|
| 642 |
+
Create a new conversation with metadata
|
| 643 |
+
Args:
|
| 644 |
+
title: Optional title for the conversation
|
| 645 |
+
message: First message to use for generating a title
|
| 646 |
+
Returns:
|
| 647 |
+
conversation_id: ID of the new conversation
|
| 648 |
+
"""
|
| 649 |
+
# Generate a new unique conversation ID
|
| 650 |
+
conv_id = str(uuid.uuid4())
|
| 651 |
+
|
| 652 |
+
# Set as current conversation
|
| 653 |
+
self.current_conv_id = conv_id
|
| 654 |
+
|
| 655 |
+
# Generate title from message if not provided
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
title = message[:50] + ("..." if len(message) > 50 else "")
|
| 659 |
+
|
| 660 |
+
# Create timestamp
|
| 661 |
+
current_time = datetime.now().isoformat()
|
| 662 |
+
|
| 663 |
+
# Store metadata with resource information
|
| 664 |
+
self.convs_metadata[conv_id] = {
|
| 665 |
+
"title": title,
|
| 666 |
+
"created_at": current_time,
|
| 667 |
+
"updated_at": current_time,
|
| 668 |
+
"llm": self.llm_name,
|
| 669 |
+
"vector_store": self.vector_store_name,
|
| 670 |
+
"message_count": 0
|
| 671 |
+
}
|
| 672 |
+
|
| 673 |
+
# Initialize chat engine with the new conversation ID
|
| 674 |
+
# self.chat_engine = self.build_chat_engine(conv_id)
|
| 675 |
+
|
| 676 |
+
return conv_id
|
| 677 |
+
|
| 678 |
+
def update_conversation_metadata(self, conv_id, title=None, increment_message_count=True):
|
| 679 |
+
"""
|
| 680 |
+
Update conversation metadata
|
| 681 |
+
Args:
|
| 682 |
+
conv_id: Conversation ID to update
|
| 683 |
+
title: Optional new title
|
| 684 |
+
increment_message_count: Whether to increment message count
|
| 685 |
+
"""
|
| 686 |
+
if conv_id not in self.convs_metadata:
|
| 687 |
+
return
|
| 688 |
+
|
| 689 |
+
# Update timestamp
|
| 690 |
+
self.convs_metadata[conv_id]["updated_at"] = datetime.now().isoformat()
|
| 691 |
+
|
| 692 |
+
# Update title if provided
|
| 693 |
+
if title:
|
| 694 |
+
self.convs_metadata[conv_id]["title"] = title
|
| 695 |
+
|
| 696 |
+
# Increment message count if requested
|
| 697 |
+
if increment_message_count:
|
| 698 |
+
self.convs_metadata[conv_id]["message_count"] = self.convs_metadata[conv_id].get("message_count", 0) + 1
|
| 699 |
+
|
| 700 |
+
def get_sorted_conversations(self):
|
| 701 |
+
"""
|
| 702 |
+
Returns a list of conversation IDs sorted by update time,
|
| 703 |
+
with the most recently updated conversations first.
|
| 704 |
+
"""
|
| 705 |
+
# Create a list of (conv_id, updated_at) tuples
|
| 706 |
+
conv_with_timestamps = []
|
| 707 |
+
|
| 708 |
+
for conv_id, metadata in self.convs_metadata.items():
|
| 709 |
+
# Use updated_at timestamp for sorting
|
| 710 |
+
if "updated_at" in metadata:
|
| 711 |
+
# Convert the ISO timestamp string to datetime object for comparison
|
| 712 |
+
update_time = datetime.fromisoformat(metadata["updated_at"])
|
| 713 |
+
conv_with_timestamps.append((conv_id, update_time))
|
| 714 |
+
|
| 715 |
+
# Sort by timestamp (descending order - newest first)
|
| 716 |
+
sorted_convs = sorted(conv_with_timestamps, key=lambda x: x[1], reverse=True)
|
| 717 |
+
|
| 718 |
+
# Return just the conversation IDs in the sorted order
|
| 719 |
+
return [conv_id for conv_id, _ in sorted_convs]
|
| 720 |
+
|
| 721 |
+
def get_conversation_info(self, conv_id):
|
| 722 |
+
"""Get conversation metadata"""
|
| 723 |
+
return self.convs_metadata.get(conv_id, {})
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
def save_metadata(self):
|
| 728 |
+
"""Save conversation metadata to file"""
|
| 729 |
+
if hasattr(self, 'chat_store_file_path') and self.user_id:
|
| 730 |
+
metadata_path = os.path.join(CONVERSATION_HISTORY_PATH, self.user_id, f"{self.user_id}_metadata.json")
|
| 731 |
+
os.makedirs(os.path.dirname(metadata_path), exist_ok=True)
|
| 732 |
+
with open(metadata_path, 'w') as f:
|
| 733 |
+
json.dump(self.convs_metadata, f)
|
| 734 |
+
|
| 735 |
+
def load_metadata(self):
|
| 736 |
+
"""Load conversation metadata from file"""
|
| 737 |
+
if self.user_id:
|
| 738 |
+
metadata_path = os.path.join(CONVERSATION_HISTORY_PATH, self.user_id, f"{self.user_id}_metadata.json")
|
| 739 |
+
if os.path.exists(metadata_path):
|
| 740 |
+
try:
|
| 741 |
+
with open(metadata_path, 'r') as f:
|
| 742 |
+
self.convs_metadata = json.load(f)
|
| 743 |
+
except Exception as e:
|
| 744 |
+
print(f"Error loading metadata: {e}")
|
| 745 |
+
|
| 746 |
+
def edit_message(self, index, conversation_id):
|
| 747 |
+
if conversation_id is not None:
|
| 748 |
+
|
| 749 |
+
msg_list = self.chat_store.get_messages(conversation_id)
|
| 750 |
+
new_msg_list = msg_list[:index]
|
| 751 |
+
|
| 752 |
+
self.chat_store.set_messages(conversation_id, new_msg_list)
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
self.save_metadata()
|
| 756 |
+
self.save_chat_history()
|
| 757 |
+
|
| 758 |
+
|
| 759 |
+
def retry_message(self, conversation_id):
|
| 760 |
+
if conversation_id is not None:
|
| 761 |
+
self.undo_message(conversation_id)
|
| 762 |
+
self.save_metadata()
|
| 763 |
+
self.save_chat_history()
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
def undo_message(self, conversation_id):
|
| 768 |
+
if conversation_id is not None:
|
| 769 |
+
msg_list = self.chat_store.get_messages(conversation_id)
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
if msg_list[-1].role == MessageRole.ASSISTANT and len(msg_list) > 0:
|
| 773 |
+
self.chat_store.delete_last_message(conversation_id)
|
| 774 |
+
if msg_list[-1].role == MessageRole.USER and len(msg_list) > 0:
|
| 775 |
+
self.chat_store.delete_last_message(conversation_id)
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
self.update_convs_metadata(conversation_id)
|
| 781 |
+
self.save_metadata()
|
| 782 |
+
self.save_chat_history()
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
def delete_conversation(self, conversation_id):
|
| 786 |
+
if conversation_id is not None:
|
| 787 |
+
self.chat_store.delete_messages(conversation_id)
|
| 788 |
+
self.convs_metadata.pop(conversation_id)
|
| 789 |
+
self.save_metadata()
|
| 790 |
+
self.save_chat_history()
|
| 791 |
+
self.sorted_conversation_list = self.get_sorted_conversation_list()
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
class SessionManager:
|
| 797 |
+
def __init__(self):
|
| 798 |
+
self.sessions = {}
|
| 799 |
+
|
| 800 |
+
def create_session(self, user_id=None):
|
| 801 |
+
if user_id is None:
|
| 802 |
+
return None
|
| 803 |
+
|
| 804 |
+
print(f"Creating session for user {user_id}")
|
| 805 |
+
if user_id not in self.sessions:
|
| 806 |
+
self.sessions[user_id] = comfitChatEngine(user_id, llm_name=DEFAULT_LLM, vector_store_name=DEFAULT_VECTOR_STORE)
|
| 807 |
+
print(f"Session created for user {user_id}")
|
| 808 |
+
return self.sessions[user_id]
|
| 809 |
+
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
|
| 813 |
+
|
| 814 |
+
class ChatbotUI:
|
| 815 |
+
"""UI handler for the chatbot application"""
|
| 816 |
+
|
| 817 |
+
def __init__(self, comfit_chatbot):
|
| 818 |
+
"""Initialize with a chat engine"""
|
| 819 |
+
self.comfit_chatbot = comfit_chatbot
|
| 820 |
+
self.init_attr()
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
def init_attr(self):
|
| 824 |
+
self.llm_options = self.comfit_chatbot.llm_options
|
| 825 |
+
self.vector_stores = self.comfit_chatbot.vector_stores
|
| 826 |
+
# self.vector_stores_options = [(v["display_name"], k) for k, v in self.comfit_chatbot.vector_stores.items()]
|
| 827 |
+
|
| 828 |
+
|
| 829 |
+
# self.init_conversations_history()
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
# def init_conversations_history(self):
|
| 833 |
+
# chat_session = self.comfit_chatbot.session_manager.sessions[USER_NAME]
|
| 834 |
+
# self.init_convs_list = chat_session.get_sorted_conversation_list_for_ui()
|
| 835 |
+
# if len(self.init_convs_list) > 0:
|
| 836 |
+
# self.init_chat_history = chat_session.get_chat_history(chat_session.sorted_conversation_list[0])
|
| 837 |
+
# self.init_convs_index = 0
|
| 838 |
+
# else:
|
| 839 |
+
# self.init_chat_history = []
|
| 840 |
+
# self.init_convs_index = None
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
|
| 847 |
+
|
| 848 |
+
def create_ui(self):
|
| 849 |
+
with gr.Blocks(title="Comfort and Fit Copilot (ComFit Copilot)") as demo:
|
| 850 |
+
|
| 851 |
+
user_id = gr.State(None)
|
| 852 |
+
|
| 853 |
+
with gr.Row():
|
| 854 |
+
with gr.Column(scale=6):
|
| 855 |
+
gr.Markdown("<img src='/gradio_api/file/logo.png' alt='Innovision Logo' height='150' width='390'>")
|
| 856 |
+
with gr.Column(scale=1):
|
| 857 |
+
login_btn = gr.LoginButton()
|
| 858 |
+
|
| 859 |
+
with gr.Row():
|
| 860 |
+
gr.Markdown("# Comfort and Fit Copilot (ComFit Copilot)")
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
# Move model selection to the top row
|
| 865 |
+
with gr.Row():
|
| 866 |
+
with gr.Column(scale=3):
|
| 867 |
+
llm_dropdown = gr.Dropdown(
|
| 868 |
+
label="Select Language Model",
|
| 869 |
+
choices=list(self.llm_options.values()),
|
| 870 |
+
value=next(iter(self.llm_options.values()), None)
|
| 871 |
+
)
|
| 872 |
+
with gr.Column(scale=3):
|
| 873 |
+
vector_dropdown = gr.Dropdown(
|
| 874 |
+
label="Injury Biomechanics Knowledge Base",
|
| 875 |
+
choices=[(v["display_name"]) for k, v in self.vector_stores.items()],
|
| 876 |
+
value=next(iter(self.vector_stores.keys()), None)
|
| 877 |
+
|
| 878 |
+
)
|
| 879 |
+
|
| 880 |
+
# Main content with sidebar and chat area
|
| 881 |
+
with gr.Row():
|
| 882 |
+
# Left sidebar for conversation history
|
| 883 |
+
with gr.Column(scale=1, elem_classes="sidebar"):
|
| 884 |
+
new_chat_btn = gr.Button("New Chat", size="sm")
|
| 885 |
+
|
| 886 |
+
# Hidden textbox for conversation data
|
| 887 |
+
conversation_data = gr.Textbox(visible=False)
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
# Dataset for conversation history
|
| 891 |
+
conversation_history = gr.Dataset(
|
| 892 |
+
components=[conversation_data],
|
| 893 |
+
label="Conversation History",
|
| 894 |
+
type="index",
|
| 895 |
+
layout="table"
|
| 896 |
+
)
|
| 897 |
+
|
| 898 |
+
|
| 899 |
+
# Main chat area
|
| 900 |
+
with gr.Column(scale=3):
|
| 901 |
+
chatbot = gr.Chatbot(
|
| 902 |
+
height=500,
|
| 903 |
+
render_markdown=True,
|
| 904 |
+
show_copy_button=True,
|
| 905 |
+
type="messages",
|
| 906 |
+
)
|
| 907 |
+
|
| 908 |
+
with gr.Row():
|
| 909 |
+
msg = gr.Textbox(label="Ask me anything", placeholder="Log in to start chatting", interactive=False)
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
# def get_auth_id(oauth_token: gr.OAuthToken | None) -> str:
|
| 913 |
+
# if oauth_token is None:
|
| 914 |
+
# return None
|
| 915 |
+
# id = whoami(oauth_token.token)['id']
|
| 916 |
+
# return id
|
| 917 |
+
|
| 918 |
+
def get_auth_id(oauth_token: gr.OAuthToken | None) -> str | None:
|
| 919 |
+
|
| 920 |
+
print(oauth_token)
|
| 921 |
+
if oauth_token is None:
|
| 922 |
+
return None
|
| 923 |
+
|
| 924 |
+
try:
|
| 925 |
+
user_info = whoami(oauth_token.token)
|
| 926 |
+
print(user_info)
|
| 927 |
+
return user_info.get('id')
|
| 928 |
+
except Exception as e:
|
| 929 |
+
print(f"Authentication failed: {e}")
|
| 930 |
+
return None
|
| 931 |
+
|
| 932 |
+
|
| 933 |
+
|
| 934 |
+
def add_msg(msg, history):
|
| 935 |
+
|
| 936 |
+
|
| 937 |
+
history.append({"role": "user", "content": msg})
|
| 938 |
+
return history
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
|
| 942 |
+
def chat_with_comfit(history, user_id, conv_idx):
|
| 943 |
+
|
| 944 |
+
start_time = time.time()
|
| 945 |
+
|
| 946 |
+
msg = history[-1]["content"]
|
| 947 |
+
|
| 948 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 949 |
+
# user_engine.che
|
| 950 |
+
|
| 951 |
+
# conv_id = None
|
| 952 |
+
if conv_idx is not None:
|
| 953 |
+
conv_id = user_engine.sorted_conversation_list[conv_idx]
|
| 954 |
+
else:
|
| 955 |
+
conv_id = None
|
| 956 |
+
|
| 957 |
+
# if len(history) == 1 and conv_idx is None:
|
| 958 |
+
# conv_id = None
|
| 959 |
+
|
| 960 |
+
|
| 961 |
+
response = user_engine.chat(msg, conv_id)
|
| 962 |
+
answer = response.response
|
| 963 |
+
|
| 964 |
+
processed_answer_dict = process_text_with_think_tags(answer)
|
| 965 |
+
|
| 966 |
+
|
| 967 |
+
if processed_answer_dict["has_two_parts"]:
|
| 968 |
+
think_content = processed_answer_dict["think_part"]
|
| 969 |
+
remaining_text = processed_answer_dict["regular_part"]
|
| 970 |
+
|
| 971 |
+
|
| 972 |
+
# thick_msg = gr.ChatMessage(role="assistant", content="", metadata={"title":"Thinking..."})
|
| 973 |
+
history.append({"role": "assistant", "content": "", "metadata":{"title":"Thinking...", "status":"pending"}})
|
| 974 |
+
# history.append(thick_msg)
|
| 975 |
+
for character in think_content:
|
| 976 |
+
history[-1]["content"] += character
|
| 977 |
+
yield history
|
| 978 |
+
|
| 979 |
+
|
| 980 |
+
elapsed_time = time.time() - start_time
|
| 981 |
+
history[-1]["metadata"]["title"] = f"Thinking... [Thinking time: {elapsed_time:.2f}s]"
|
| 982 |
+
history[-1]["metadata"]["status"] = "done"
|
| 983 |
+
yield history
|
| 984 |
+
|
| 985 |
+
# Start response time measurement
|
| 986 |
+
|
| 987 |
+
history.append({"role": "assistant", "content": ""})
|
| 988 |
+
for character in remaining_text:
|
| 989 |
+
history[-1]["content"] += character
|
| 990 |
+
yield history
|
| 991 |
+
|
| 992 |
+
elapsed_time = time.time() - start_time
|
| 993 |
+
history[-1]["content"] += f"\n\n[Total time: {elapsed_time:.2f}s]"
|
| 994 |
+
yield history
|
| 995 |
+
|
| 996 |
+
|
| 997 |
+
else:
|
| 998 |
+
full_text = processed_answer_dict["full_text"]
|
| 999 |
+
history.append({"role": "assistant", "content": ""})
|
| 1000 |
+
for character in full_text:
|
| 1001 |
+
history[-1]["content"] += character
|
| 1002 |
+
yield history
|
| 1003 |
+
|
| 1004 |
+
elapsed_time = time.time() - start_time
|
| 1005 |
+
history[-1]["content"] += f"\n\n[Total time: {elapsed_time:.2f}s]"
|
| 1006 |
+
yield history
|
| 1007 |
+
|
| 1008 |
+
|
| 1009 |
+
def clear_msg():
|
| 1010 |
+
return ""
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
def update_conversation_history(user_id):
|
| 1014 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1015 |
+
ui_list = user_engine.get_sorted_conversation_list_for_ui()
|
| 1016 |
+
|
| 1017 |
+
if len(ui_list) > 0:
|
| 1018 |
+
idx = 0
|
| 1019 |
+
else:
|
| 1020 |
+
idx = None
|
| 1021 |
+
|
| 1022 |
+
return gr.update(samples=ui_list, value=idx)
|
| 1023 |
+
|
| 1024 |
+
|
| 1025 |
+
|
| 1026 |
+
msg.submit(
|
| 1027 |
+
add_msg,
|
| 1028 |
+
[msg, chatbot],
|
| 1029 |
+
[chatbot]
|
| 1030 |
+
).then(
|
| 1031 |
+
clear_msg,
|
| 1032 |
+
None,
|
| 1033 |
+
[msg]
|
| 1034 |
+
).then(
|
| 1035 |
+
chat_with_comfit,
|
| 1036 |
+
[chatbot, user_id, conversation_history],
|
| 1037 |
+
[chatbot]
|
| 1038 |
+
).then(
|
| 1039 |
+
update_conversation_history,
|
| 1040 |
+
[user_id],
|
| 1041 |
+
[conversation_history]
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
|
| 1045 |
+
def click_to_select_conversation(conversation_history, user_id):
|
| 1046 |
+
|
| 1047 |
+
|
| 1048 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1049 |
+
user_engine.set_current_conv_id(conversation_history, type="index")
|
| 1050 |
+
|
| 1051 |
+
|
| 1052 |
+
chat_history = user_engine.get_chat_history_for_ui(user_engine.current_conv_id)
|
| 1053 |
+
|
| 1054 |
+
llm_name = user_engine.convs_metadata[user_engine.current_conv_id]["llm_name"]
|
| 1055 |
+
vector_store_name = user_engine.convs_metadata[user_engine.current_conv_id]["vector_store_name"]
|
| 1056 |
+
|
| 1057 |
+
return gr.update(value=conversation_history), chat_history, gr.update(value=llm_name), gr.update(value=vector_store_name)
|
| 1058 |
+
|
| 1059 |
+
|
| 1060 |
+
|
| 1061 |
+
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
|
| 1065 |
+
conversation_history.click(
|
| 1066 |
+
click_to_select_conversation,
|
| 1067 |
+
[conversation_history, user_id],
|
| 1068 |
+
[conversation_history, chatbot, llm_dropdown, vector_dropdown]
|
| 1069 |
+
)
|
| 1070 |
+
|
| 1071 |
+
|
| 1072 |
+
# msg.submit(
|
| 1073 |
+
# chat_with_comfit,
|
| 1074 |
+
# [msg, chatbot, user_id_dropdown],
|
| 1075 |
+
# [chatbot]
|
| 1076 |
+
# )
|
| 1077 |
+
|
| 1078 |
+
|
| 1079 |
+
|
| 1080 |
+
# msg.submit(
|
| 1081 |
+
# clear_msg,
|
| 1082 |
+
# None,
|
| 1083 |
+
# [msg]
|
| 1084 |
+
# ).then(
|
| 1085 |
+
# chat_with_comfit,
|
| 1086 |
+
# [msg, chatbot, user_id_dropdown],
|
| 1087 |
+
# [chatbot]
|
| 1088 |
+
# )
|
| 1089 |
+
|
| 1090 |
+
|
| 1091 |
+
# clear_btn.click(
|
| 1092 |
+
# clear_session,
|
| 1093 |
+
# [session_state],
|
| 1094 |
+
# [chatbot, session_state],
|
| 1095 |
+
# queue=False
|
| 1096 |
+
# )
|
| 1097 |
+
|
| 1098 |
+
|
| 1099 |
+
def create_session(user_id):
|
| 1100 |
+
if user_id is None:
|
| 1101 |
+
return
|
| 1102 |
+
|
| 1103 |
+
|
| 1104 |
+
self.comfit_chatbot.session_manager.create_session(user_id)
|
| 1105 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1106 |
+
|
| 1107 |
+
|
| 1108 |
+
|
| 1109 |
+
sorted_conversation_list = user_engine.get_sorted_conversation_list_for_ui()
|
| 1110 |
+
|
| 1111 |
+
|
| 1112 |
+
if len(sorted_conversation_list) > 0:
|
| 1113 |
+
index = 0
|
| 1114 |
+
else:
|
| 1115 |
+
index = None
|
| 1116 |
+
update_conversation_history = gr.update(samples=sorted_conversation_list, value=index)
|
| 1117 |
+
|
| 1118 |
+
user_engine.set_current_conv_id(0, type="index")
|
| 1119 |
+
chat_history = user_engine.get_chat_history_for_ui(user_engine.current_conv_id)
|
| 1120 |
+
|
| 1121 |
+
if len(chat_history) > 0:
|
| 1122 |
+
llm_name = user_engine.convs_metadata[user_engine.current_conv_id]["llm_name"]
|
| 1123 |
+
vector_store_name = user_engine.convs_metadata[user_engine.current_conv_id]["vector_store_name"]
|
| 1124 |
+
else:
|
| 1125 |
+
llm_name = user_engine.llm_name
|
| 1126 |
+
vector_store_name = user_engine.vector_store_name
|
| 1127 |
+
|
| 1128 |
+
yield llm_name, vector_store_name, update_conversation_history, chat_history
|
| 1129 |
+
|
| 1130 |
+
|
| 1131 |
+
def activate_chat(user_id):
|
| 1132 |
+
if user_id is None:
|
| 1133 |
+
return gr.update(placeholder="Log in to start chatting", interactive=False)
|
| 1134 |
+
return gr.update(placeholder="",interactive=True)
|
| 1135 |
+
|
| 1136 |
+
|
| 1137 |
+
demo.load(
|
| 1138 |
+
get_auth_id,
|
| 1139 |
+
inputs=None,
|
| 1140 |
+
outputs=[user_id]
|
| 1141 |
+
).then(
|
| 1142 |
+
create_session,
|
| 1143 |
+
[user_id],
|
| 1144 |
+
[llm_dropdown, vector_dropdown, conversation_history, chatbot]
|
| 1145 |
+
).success(
|
| 1146 |
+
activate_chat,
|
| 1147 |
+
[user_id],
|
| 1148 |
+
[msg]
|
| 1149 |
+
)
|
| 1150 |
+
|
| 1151 |
+
|
| 1152 |
+
def update_llm(user_id, llm_name):
|
| 1153 |
+
if user_id is None:
|
| 1154 |
+
return
|
| 1155 |
+
|
| 1156 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1157 |
+
user_engine.set_llm(llm_name)
|
| 1158 |
+
|
| 1159 |
+
|
| 1160 |
+
|
| 1161 |
+
llm_dropdown.change(
|
| 1162 |
+
update_llm,
|
| 1163 |
+
[user_id, llm_dropdown],
|
| 1164 |
+
None
|
| 1165 |
+
)
|
| 1166 |
+
|
| 1167 |
+
|
| 1168 |
+
def update_vector_store(user_id, vector_store_name):
|
| 1169 |
+
if user_id is None:
|
| 1170 |
+
return
|
| 1171 |
+
|
| 1172 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1173 |
+
user_engine.set_vector_store(vector_store_name)
|
| 1174 |
+
|
| 1175 |
+
|
| 1176 |
+
|
| 1177 |
+
vector_dropdown.change(
|
| 1178 |
+
update_vector_store,
|
| 1179 |
+
[user_id, vector_dropdown],
|
| 1180 |
+
None
|
| 1181 |
+
)
|
| 1182 |
+
|
| 1183 |
+
|
| 1184 |
+
def edit_chat(user_id, history, edit_data: EditData):
|
| 1185 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1186 |
+
idx = edit_data.index
|
| 1187 |
+
|
| 1188 |
+
# Count how many user messages appear up to this index in the UI history
|
| 1189 |
+
user_message_count = 0
|
| 1190 |
+
for i in range(idx + 1):
|
| 1191 |
+
if history[i]["role"] == "user":
|
| 1192 |
+
user_message_count += 1
|
| 1193 |
+
|
| 1194 |
+
# In backend storage, user messages are at positions 0, 2, 4, 6...
|
| 1195 |
+
# So the backend index is (user_message_count - 1) * 2
|
| 1196 |
+
backend_idx = (user_message_count - 1) * 2
|
| 1197 |
+
|
| 1198 |
+
user_engine.edit_message(backend_idx, user_engine.current_conv_id)
|
| 1199 |
+
history = history[: idx+1]
|
| 1200 |
+
return history
|
| 1201 |
+
|
| 1202 |
+
|
| 1203 |
+
chatbot.edit(
|
| 1204 |
+
edit_chat,
|
| 1205 |
+
[user_id, chatbot],
|
| 1206 |
+
[chatbot]
|
| 1207 |
+
).success(
|
| 1208 |
+
chat_with_comfit,
|
| 1209 |
+
[chatbot, user_id, conversation_history],
|
| 1210 |
+
[chatbot]
|
| 1211 |
+
).success(
|
| 1212 |
+
update_conversation_history,
|
| 1213 |
+
[user_id],
|
| 1214 |
+
[conversation_history]
|
| 1215 |
+
)
|
| 1216 |
+
|
| 1217 |
+
|
| 1218 |
+
|
| 1219 |
+
def retry_chat(user_id, history):
|
| 1220 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1221 |
+
user_engine.retry_message(user_engine.current_conv_id)
|
| 1222 |
+
|
| 1223 |
+
|
| 1224 |
+
while history[-1]["role"] == "assistant":
|
| 1225 |
+
history.pop()
|
| 1226 |
+
yield history
|
| 1227 |
+
|
| 1228 |
+
|
| 1229 |
+
return history
|
| 1230 |
+
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
chatbot.retry(
|
| 1236 |
+
retry_chat,
|
| 1237 |
+
[user_id, chatbot],
|
| 1238 |
+
[chatbot]
|
| 1239 |
+
).then(
|
| 1240 |
+
chat_with_comfit,
|
| 1241 |
+
[chatbot, user_id, conversation_history],
|
| 1242 |
+
[chatbot]
|
| 1243 |
+
).then(
|
| 1244 |
+
update_conversation_history,
|
| 1245 |
+
[user_id],
|
| 1246 |
+
[conversation_history]
|
| 1247 |
+
)
|
| 1248 |
+
|
| 1249 |
+
|
| 1250 |
+
def undo_chat(user_id):
|
| 1251 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1252 |
+
user_engine.undo_message(user_engine.current_conv_id)
|
| 1253 |
+
|
| 1254 |
+
chat_history = user_engine.get_chat_history_for_ui(user_engine.current_conv_id)
|
| 1255 |
+
|
| 1256 |
+
return chat_history
|
| 1257 |
+
|
| 1258 |
+
chatbot.undo(
|
| 1259 |
+
undo_chat,
|
| 1260 |
+
[user_id],
|
| 1261 |
+
[chatbot]
|
| 1262 |
+
)
|
| 1263 |
+
|
| 1264 |
+
|
| 1265 |
+
|
| 1266 |
+
def clear_conversation(user_id):
|
| 1267 |
+
user_engine = self.comfit_chatbot.session_manager.sessions[user_id]
|
| 1268 |
+
user_engine.delete_conversation(user_engine.current_conv_id)
|
| 1269 |
+
|
| 1270 |
+
sorted_conversation_list = user_engine.get_sorted_conversation_list_for_ui()
|
| 1271 |
+
|
| 1272 |
+
if len(sorted_conversation_list) > 0:
|
| 1273 |
+
index = 0
|
| 1274 |
+
else:
|
| 1275 |
+
index = None
|
| 1276 |
+
update_conversation_history = gr.update(samples=sorted_conversation_list, value=index)
|
| 1277 |
+
|
| 1278 |
+
|
| 1279 |
+
|
| 1280 |
+
user_engine.set_current_conv_id(index, type="index")
|
| 1281 |
+
chat_history = user_engine.get_chat_history_for_ui(user_engine.current_conv_id)
|
| 1282 |
+
|
| 1283 |
+
yield update_conversation_history, chat_history
|
| 1284 |
+
|
| 1285 |
+
|
| 1286 |
+
|
| 1287 |
+
chatbot.clear(
|
| 1288 |
+
clear_conversation,
|
| 1289 |
+
[user_id],
|
| 1290 |
+
[conversation_history, chatbot]
|
| 1291 |
+
)
|
| 1292 |
+
|
| 1293 |
+
# Create new conversation button should only clear the chat area, but not create a new conversation yet
|
| 1294 |
+
def prepare_new_chat():
|
| 1295 |
+
print("prepare_new_chat")
|
| 1296 |
+
|
| 1297 |
+
return [], gr.update(value=None)
|
| 1298 |
+
|
| 1299 |
+
def print_dataset(value):
|
| 1300 |
+
print(value)
|
| 1301 |
+
|
| 1302 |
+
# Create new conversation
|
| 1303 |
+
new_chat_btn.click(
|
| 1304 |
+
prepare_new_chat,
|
| 1305 |
+
None,
|
| 1306 |
+
[chatbot, conversation_history],
|
| 1307 |
+
).then(
|
| 1308 |
+
print_dataset,
|
| 1309 |
+
conversation_history,
|
| 1310 |
+
None
|
| 1311 |
+
)
|
| 1312 |
+
|
| 1313 |
+
return demo
|
| 1314 |
+
|
| 1315 |
+
|
| 1316 |
+
|
| 1317 |
+
# Deployment settings
|
| 1318 |
+
if __name__ == "__main__":
|
| 1319 |
+
# Check chat store health
|
| 1320 |
+
# store_health_ok = check_chat_store_health()
|
| 1321 |
+
# if not store_health_ok:
|
| 1322 |
+
# print("WARNING: Chat store health check failed! Some functionality may not work correctly.")
|
| 1323 |
+
|
| 1324 |
+
# # Run warm-up to pre-initialize resources
|
| 1325 |
+
# warm_up_resources()
|
| 1326 |
+
|
| 1327 |
+
comfit_chatbot = ComFitChatbot()
|
| 1328 |
+
ui = ChatbotUI(comfit_chatbot)
|
| 1329 |
+
demo = ui.create_ui()
|
| 1330 |
+
demo.queue(max_size=10, default_concurrency_limit=3)
|
| 1331 |
+
demo.launch(allowed_paths=["logo.png"])
|
| 1332 |
+
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{ "models": ["hf.co/JatinkInnovision/ComFit4:Q4_K_M"]}
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 2 |
+
numpy==1.26.4
|
| 3 |
+
ollama==0.3.3
|
| 4 |
+
onnx==1.17.0
|
| 5 |
+
gradio==5.16.0
|
| 6 |
+
gradiologin
|
| 7 |
+
gradio[oauth]
|
| 8 |
+
huggingface-hub
|
| 9 |
+
hf-transfer
|
| 10 |
+
llama-index-core==0.11.18
|
| 11 |
+
llama-index-embeddings-huggingface-optimum==0.2.0
|
| 12 |
+
llama-index-llms-ollama==0.3.4
|
| 13 |
+
llama-index-vector-stores-duckdb==0.2.0
|
| 14 |
+
llama-index-llms-openai==0.2.5
|
| 15 |
+
duckdb==0.10.3
|
| 16 |
+
nest_asyncio
|
| 17 |
+
torch==2.5.0+cu121
|
| 18 |
+
pydantic==2.10.6
|
start.sh
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/sh
|
| 2 |
+
ollama serve > /dev/null 2>&1 &
|
| 3 |
+
sleep 10 && python3 app.py
|