AI model
Browse files- app.py +42 -0
- omni_rnn_0.h5 +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow import keras
|
4 |
+
|
5 |
+
# Load the pre-trained model
|
6 |
+
model = keras.models.load_model('omni_rnn_0.h5')
|
7 |
+
|
8 |
+
def predict(year, proton_density, temperature):
|
9 |
+
try:
|
10 |
+
# Ensure the input data has the correct types and ranges
|
11 |
+
year = int(year)
|
12 |
+
proton_density = float(proton_density)
|
13 |
+
temperature = float(temperature)
|
14 |
+
|
15 |
+
# Ensure the input data is within valid ranges
|
16 |
+
if year < 0 or proton_density < 0 or temperature < 0:
|
17 |
+
return {"error": "Input values should be non-negative"}
|
18 |
+
|
19 |
+
# Convert input data to a NumPy array
|
20 |
+
input_data = np.array([year, proton_density, temperature]).reshape(1, -1)
|
21 |
+
|
22 |
+
# Make predictions using the loaded model
|
23 |
+
predictions = model.predict(input_data)
|
24 |
+
|
25 |
+
# Format the predictions as a dictionary
|
26 |
+
result = {
|
27 |
+
"predicted_speed": float(predictions[0, 0]),
|
28 |
+
"predicted_field_magnitude": float(predictions[0, 1])
|
29 |
+
}
|
30 |
+
|
31 |
+
return result
|
32 |
+
|
33 |
+
except Exception as e:
|
34 |
+
return {"error": str(e)}
|
35 |
+
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=predict,
|
38 |
+
inputs=["text", "text", "text"], # Year, Proton Density, Temperature
|
39 |
+
outputs="json"
|
40 |
+
)
|
41 |
+
|
42 |
+
iface.launch()
|
omni_rnn_0.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48024055b87eaac2c44ed186d9b21cf8d7acf6bce6b7fb81ea9e4f5f7b02570d
|
3 |
+
size 154352
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
flask-cors
|
3 |
+
tensorflow
|