Spaces:
Sleeping
Sleeping
| import os, json, time, sqlite3, requests, io, csv | |
| import numpy as np | |
| import gradio as gr | |
| from typing import List, Dict | |
| from sentence_transformers import SentenceTransformer | |
| # ---- DAO CONFIG ---- | |
| DAO_ADDRESS = os.environ.get("DAO_ADDRESS", "0xE2F60eEEd806Cb2790c0685334D0b95417c386E0") | |
| FIELD_TOKEN = os.environ.get("FIELD_TOKEN", "0xcBC6309dd6c79C9210cB3DBc014d43205A92BbC8") | |
| ARBITRUM_RPC = os.environ.get("ARBITRUM_RPC", "https://arb1.arbitrum.io/rpc") | |
| TELEMETRY_WEBHOOK = os.environ.get("TELEMETRY_WEBHOOK", "http://0.0.0.0:8080") # point to FastAPI server /usage | |
| PREMIUM_KEY = os.environ.get("PREMIUM_KEY", "") | |
| FREE_LIMIT = int(os.environ.get("FREE_LIMIT", "20")) | |
| DB_PATH = os.environ.get("DB_PATH", "inneri_reskill.db") | |
| EMBED_MODEL = os.environ.get("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2") | |
| TOP_K = int(os.environ.get("TOP_K", "5")) | |
| def db(): | |
| conn = sqlite3.connect(DB_PATH) | |
| conn.execute("PRAGMA foreign_keys = ON;") | |
| return conn | |
| def init_db(): | |
| conn = db(); cur = conn.cursor() | |
| cur.execute("CREATE TABLE IF NOT EXISTS users(user_id TEXT PRIMARY KEY, balance_cents INTEGER DEFAULT 0);") | |
| cur.execute("CREATE TABLE IF NOT EXISTS guides(id INTEGER PRIMARY KEY AUTOINCREMENT, owner_id TEXT, title TEXT, text TEXT, tags TEXT, namespace TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);") | |
| cur.execute("CREATE TABLE IF NOT EXISTS embeds(id INTEGER PRIMARY KEY AUTOINCREMENT, guide_id INTEGER, namespace TEXT, dim INTEGER, vec BLOB, FOREIGN KEY(guide_id) REFERENCES guides(id) ON DELETE CASCADE);") | |
| cur.execute("CREATE TABLE IF NOT EXISTS traces(id INTEGER PRIMARY KEY AUTOINCREMENT, trace_id TEXT, user_id TEXT, question TEXT, answer TEXT, sources TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);") | |
| cur.execute("CREATE TABLE IF NOT EXISTS usage_credits(user_id TEXT, guide_id INTEGER, credits REAL, period TEXT);") | |
| conn.commit(); conn.close() | |
| def ensure_user(user_id:str): | |
| conn = db(); cur = conn.cursor() | |
| cur.execute("INSERT OR IGNORE INTO users(user_id,balance_cents) VALUES(?,0)", (user_id,)) | |
| conn.commit(); conn.close() | |
| _embedder = None | |
| def get_embedder(): | |
| global _embedder | |
| if _embedder is None: | |
| _embedder = SentenceTransformer(EMBED_MODEL) | |
| return _embedder | |
| def embed_texts(texts: List[str]): | |
| return np.array(get_embedder().encode(texts, show_progress_bar=False, normalize_embeddings=True), dtype=np.float32) | |
| def vec_to_blob(vec: np.ndarray) -> bytes: | |
| return vec.astype(np.float32).tobytes() | |
| def blob_to_vec(blob: bytes) -> np.ndarray: | |
| return np.frombuffer(blob, dtype=np.float32) | |
| def add_guide(owner_id:str, title:str, text:str, tags:str, namespace:str): | |
| ensure_user(owner_id) | |
| conn = db(); cur = conn.cursor() | |
| cur.execute("INSERT INTO guides(owner_id,title,text,tags,namespace) VALUES(?,?,?,?,?)",(owner_id, title, text, tags, namespace)) | |
| gid = cur.lastrowid | |
| vec = embed_texts([text])[0] | |
| cur.execute("INSERT INTO embeds(guide_id,namespace,dim,vec) VALUES(?,?,?,?)",(gid, namespace, vec.shape[0], vec_to_blob(vec))) | |
| conn.commit(); conn.close() | |
| return gid | |
| def list_guides(namespace:str): | |
| conn = db(); cur = conn.cursor() | |
| cur.execute("SELECT id, owner_id, title, tags, created_at FROM guides WHERE namespace=? ORDER BY created_at DESC",(namespace,)) | |
| rows = cur.fetchall(); conn.close() | |
| return rows | |
| def retrieve(question:str, namespace:str, top_k:int=TOP_K)->List[Dict]: | |
| qv = embed_texts([question])[0] | |
| conn = db(); cur = conn.cursor() | |
| cur.execute("SELECT e.id, e.guide_id, e.vec, g.title, g.owner_id, g.text FROM embeds e JOIN guides g ON e.guide_id=g.id WHERE e.namespace=?",(namespace,)) | |
| rows = cur.fetchall(); conn.close() | |
| if not rows: return [] | |
| mat = np.stack([blob_to_vec(r[2]) for r in rows]) | |
| sims = mat @ qv | |
| idx = np.argsort(-sims)[:top_k] | |
| results = [] | |
| for i in idx: | |
| _, gid, _, title, owner, text = rows[int(i)] | |
| results.append({"guide_id": int(gid), "owner": owner, "title": title or "Untitled", "text": text, "score": float(sims[int(i)])}) | |
| return results | |
| def synthesize_answer(question:str, contexts:List[Dict])->str: | |
| bullets = [] | |
| for i,c in enumerate(contexts): | |
| snippet = c["text"][:400].replace("\n"," ").strip() | |
| bullets.append(f"[{i+1}] {c['title']}: {snippet}") | |
| return "Q: " + question + "\n\nGuides:\n" + "\n".join(bullets) | |
| def record_usage(ctx:List[Dict], period:str): | |
| conn = db(); cur = conn.cursor() | |
| total = sum(max(0.0, c["score"]) for c in ctx) or 1.0 | |
| for c in ctx: | |
| w = max(0.0, c["score"])/total | |
| cur.execute("INSERT INTO usage_credits(user_id, guide_id, credits, period) VALUES(?,?,?,?)", | |
| (c["owner"], c["guide_id"], w, period)) | |
| conn.commit(); conn.close() | |
| def payout_csv(period:str, total_field:int=50000): | |
| conn = db(); cur = conn.cursor() | |
| cur.execute("SELECT user_id, SUM(credits) FROM usage_credits WHERE period=? GROUP BY user_id", (period,)) | |
| rows = cur.fetchall(); conn.close() | |
| total = sum(r[1] for r in rows) or 1.0 | |
| lines = ["recipient_address,amount_FIELD,reason,period"] | |
| for user, credits in rows: | |
| amt = int(round(total_field * (credits/total))) | |
| lines.append(f"{user},{amt},Guide usage,{period}") | |
| return "\n".join(lines) | |
| def dao_panel_read(field_token:str): | |
| out = {"dao_address": DAO_ADDRESS, "field_token": field_token or "(set FIELD_TOKEN)", "balances": {}, "notes": ""} | |
| try: | |
| from web3 import Web3 | |
| ERC20_ABI = [ | |
| {"constant":True,"inputs":[{"name":"a","type":"address"}],"name":"balanceOf","outputs":[{"name":"","type":"uint256"}],"type":"function"}, | |
| {"constant":True,"inputs":[],"name":"totalSupply","outputs":[{"name":"","type":"uint256"}],"type":"function"}, | |
| {"constant":True,"inputs":[],"name":"decimals","outputs":[{"name":"","type":"uint8"}],"type":"function"}, | |
| {"constant":True,"inputs":[],"name":"symbol","outputs":[{"name":"","type":"string"}],"type":"function"} | |
| ] | |
| w3 = Web3(Web3.HTTPProvider(ARBITRUM_RPC, request_kwargs={"timeout": 10})) | |
| if not field_token: | |
| out["notes"] = "Set FIELD_TOKEN to read balances." | |
| return json.dumps(out, indent=2) | |
| token = w3.eth.contract(address=w3.to_checksum_address(field_token), abi=ERC20_ABI) | |
| dec = token.functions.decimals().call() | |
| sym = token.functions.symbol().call() | |
| ts = token.functions.totalSupply().call() / (10**dec) | |
| bal = token.functions.balanceOf(w3.to_checksum_address(DAO_ADDRESS)).call() / (10**dec) | |
| out["balances"] = {"symbol": sym, "decimals": dec, "total_supply": ts, "dao_balance": bal} | |
| except Exception as e: | |
| out["notes"] = f"RPC/ABI error: {e}" | |
| return json.dumps(out, indent=2) | |
| def generate_actions_from_csv(csv_text:str, token_address:str, decimals:int=18): | |
| try: | |
| from web3 import Web3 | |
| from eth_abi import encode as abi_encode | |
| except Exception as e: | |
| return "Missing dependency: web3/eth_abi. Ensure requirements are installed." | |
| rows = list(csv.reader(io.StringIO(csv_text.strip()))) | |
| header = [h.strip().lower() for h in rows[0]] | |
| if header[:2] != ["recipient_address","amount_field"]: | |
| return "CSV must start with columns: recipient_address,amount_FIELD,..." | |
| actions = [] | |
| selector = Web3.keccak(text="transfer(address,uint256)")[:4] | |
| w3 = Web3() | |
| for r in rows[1:]: | |
| if not r or len(r)<2: | |
| continue | |
| to = w3.to_checksum_address(r[0].strip()) | |
| amt = int(r[1].strip()) | |
| wei = amt * (10**decimals) | |
| data = "0x" + (selector + abi_encode(["address","uint256"], [to, wei])).hex() | |
| actions.append({"to": token_address, "value": 0, "data": data}) | |
| return json.dumps(actions, indent=2) | |
| SESSION_QUERIES = {} | |
| def log(evt, payload): | |
| try: | |
| if TELEMETRY_WEBHOOK: | |
| requests.post(TELEMETRY_WEBHOOK, json={"evt":evt, **payload}, timeout=5) | |
| except Exception: | |
| pass | |
| def ask(user_id:str, question:str, namespace:str, premium_key:str, period:str): | |
| sid = user_id or "anon" | |
| count = SESSION_QUERIES.get(sid, 0) | |
| if (not PREMIUM_KEY) or (premium_key != PREMIUM_KEY): | |
| if count >= FREE_LIMIT: | |
| return f"Free limit reached ({FREE_LIMIT}). Enter premium key.", "", "" | |
| SESSION_QUERIES[sid] = count + 1 | |
| ctx = retrieve(question, namespace) | |
| if not ctx: | |
| return "No guides yet. Add some first.", "", "" | |
| ans = synthesize_answer(question, ctx) | |
| record_usage(ctx, period) | |
| log("ask", {"user": sid, "ns": namespace, "period": period, "guide_ids": [c["guide_id"] for c in ctx]}) | |
| src = "\n".join([f"[{i+1}] {c['title']} (id {c['guide_id']}) {c['score']:.2f}" for i,c in enumerate(ctx)]) | |
| return ans, src, str(int(time.time()*1000)) | |
| SEED_NAMESPACE = "inneri-guides" | |
| SEED_GUIDES = [ | |
| ("seed","Prompt Clarity: 3 Moves","1) State the goal clearly.\n2) Add 1β3 constraints.\n3) Give a short example.","prompt,basics"), | |
| ("seed","RAG Basics: Store & Retrieve","Chunk docs, embed, retrieve, generate with citations.","rag,basics"), | |
| ("seed","Chunking That Works","Overlap 50β100 tokens, respect headings, avoid >1k tokens.","rag,chunking"), | |
| ("seed","Choosing Embedding Models","MiniLM for speed; e5/bge for quality; normalize; version.","embeddings,models"), | |
| ("seed","Eval Signals","Score faithfulness, relevance, actionability.","evals,quality"), | |
| ("seed","Langfuse Setup","Log routes, latency; attach evals; dashboard triage.","observability,langfuse"), | |
| ("seed","Agentic Loops","Plan β Act β Observe β Reflect; timeouts; state; kill switch.","agents,loops"), | |
| ("seed","FastAPI for AI","/chat, /embed, /query; rate limit; metrics; costs.","ops,api"), | |
| ("seed","Data Rights & Payouts","Creators own docs; track usage; split fees.","legal,economics"), | |
| ("seed","Safety & Scope","Refuse dangerous asks; stay in domain; red-team.","safety,policy"), | |
| ] | |
| def seed_if_empty(): | |
| conn = db(); cur = conn.cursor() | |
| cur.execute("SELECT COUNT(*) FROM guides WHERE namespace=?",(SEED_NAMESPACE,)) | |
| if cur.fetchone()[0]==0: | |
| for o,t,tx,tg in SEED_GUIDES: | |
| add_guide(o,t,tx,tg,SEED_NAMESPACE) | |
| init_db(); seed_if_empty() | |
| with gr.Blocks(title="Reskill the Field β Inner I Agentic AI (DAO-Wired)") as demo: | |
| gr.Markdown(f"### Reskill the Field DAO β Inner I Agentic AI\nDAO: **{DAO_ADDRESS}** (Arbitrum) | Library + RAG + Payouts + Proposal Generator") | |
| with gr.Tab("DAO Panel"): | |
| token_in = gr.Textbox(label="$FIELD Token Address (ERC-20)", value=FIELD_TOKEN) | |
| read_btn = gr.Button("Read DAO Balances") | |
| read_out = gr.Textbox(label="DAO Balances (JSON)", lines=10) | |
| read_btn.click(lambda t: dao_panel_read(t), [token_in], [read_out]) | |
| gr.Markdown("Treasury note: target **1,000,000 $FIELD** held. Set `FIELD_TOKEN` to verify on-chain.") | |
| with gr.Tab("Browse Guides"): | |
| ns = gr.Textbox(label="Namespace", value=SEED_NAMESPACE) | |
| list_btn = gr.Button("List") | |
| table = gr.Dataframe(headers=["id","owner","title","tags","created"], datatype=["number","str","str","str","str"]) | |
| def _list(namespace): return [[r[0],r[1],r[2],r[3],r[4]] for r in list_guides(namespace)] | |
| list_btn.click(_list,[ns],[table]) | |
| with gr.Tab("Add Guide"): | |
| u = gr.Textbox(label="Your Handle (wallet address preferred for payouts)", value="0xYourWallet") | |
| title = gr.Textbox(label="Title", value="My New Guide") | |
| tags = gr.Textbox(label="Tags", value="custom") | |
| ns2 = gr.Textbox(label="Namespace", value=SEED_NAMESPACE) | |
| txt = gr.Textbox(label="Guide Text", lines=10) | |
| add_btn = gr.Button("Add Guide") | |
| add_out = gr.Textbox(label="Result") | |
| def _add(uid,title,text,tags,ns): | |
| if not text.strip(): return "Add some text." | |
| gid=add_guide(uid,title,text,tags,ns); return f"Added id={gid}" | |
| add_btn.click(_add,[u,title,txt,tags,ns2],[add_out]) | |
| with gr.Tab("Ask (RAG) + Usage Log"): | |
| u2=gr.Textbox(label="User ID (optional)", value="") | |
| q=gr.Textbox(label="Question", value="How do I set up eval signals?", lines=3) | |
| ns3=gr.Textbox(label="Namespace", value=SEED_NAMESPACE) | |
| period=gr.Textbox(label="Period (YYYY-MM)", value="2025-09") | |
| prem=gr.Textbox(label="Premium Key (optional)", value="") | |
| ask_btn=gr.Button("Ask") | |
| ans=gr.Textbox(label="Answer", lines=12) | |
| src=gr.Textbox(label="Sources", lines=8) | |
| trace=gr.Textbox(label="Trace ID") | |
| ask_btn.click(lambda uid,qq,ns,per,pk: ask(uid,qq,ns,pk,per), [u2,q,ns3,period,prem],[ans,src,trace]) | |
| with gr.Tab("Payout Builder (CSV)"): | |
| per=gr.Textbox(label="Period (YYYY-MM)", value="2025-09") | |
| total=gr.Number(label="Total $FIELD to distribute", value=50000, precision=0) | |
| build=gr.Button("Generate CSV") | |
| csv_out=gr.Textbox(label="CSV Preview", lines=12) | |
| build.click(lambda p,t: payout_csv(p, int(t)), [per,total],[csv_out]) | |
| with gr.Tab("Proposal Generator (Aragon Actions)"): | |
| gr.Markdown("Paste payout CSV β get ERC-20 `transfer()` actions JSON for Aragon's Custom action.") | |
| csv_in = gr.Textbox(label="Payout CSV", lines=12, value="recipient_address,amount_FIELD,reason,period\n0x0000000000000000000000000000000000000000,1000,Guide usage,2025-09") | |
| token_addr = gr.Textbox(label="$FIELD Token Address", value=FIELD_TOKEN) | |
| decimals = gr.Number(label="Token Decimals", value=18, precision=0) | |
| gen_btn = gr.Button("Generate Actions JSON") | |
| actions_out = gr.Textbox(label="Encoded Actions JSON", lines=14) | |
| gen_btn.click(lambda c,t,d: generate_actions_from_csv(c,t,int(d)), [csv_in, token_addr, decimals], [actions_out]) | |
| demo.launch() | |