Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import spaces
|
|
5 |
import torch
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
-
from custom_pipeline import
|
9 |
|
10 |
# Constants
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -16,7 +16,7 @@ DEFAULT_INFERENCE_STEPS = 1
|
|
16 |
|
17 |
# Device and model setup
|
18 |
dtype = torch.float16
|
19 |
-
pipe =
|
20 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
21 |
).to("cuda")
|
22 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
|
@@ -24,7 +24,7 @@ torch.cuda.empty_cache()
|
|
24 |
|
25 |
# Inference function
|
26 |
@spaces.GPU(duration=25)
|
27 |
-
def generate_image(prompt, seed=
|
28 |
if randomize_seed:
|
29 |
seed = random.randint(0, MAX_SEED)
|
30 |
generator = torch.Generator().manual_seed(int(float(seed)))
|
|
|
5 |
import torch
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
+
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
|
9 |
|
10 |
# Constants
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
16 |
|
17 |
# Device and model setup
|
18 |
dtype = torch.float16
|
19 |
+
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
|
20 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
21 |
).to("cuda")
|
22 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
|
|
|
24 |
|
25 |
# Inference function
|
26 |
@spaces.GPU(duration=25)
|
27 |
+
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
28 |
if randomize_seed:
|
29 |
seed = random.randint(0, MAX_SEED)
|
30 |
generator = torch.Generator().manual_seed(int(float(seed)))
|