|
""" |
|
Copyright 2024 Infosys Ltd.” |
|
|
|
Use of this source code is governed by MIT license that can be found in the LICENSE file or at |
|
MIT license https://opensource.org/licenses/MIT |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
|
|
""" |
|
|
|
from fairness.dao.bias_model import Bias, TrainingDataset, PredictionDataset |
|
from fairness.dao.mitigation_model import Mitigation, TrainingDataset |
|
from infosys_responsible_ai_fairness.responsible_ai_fairness import BiasResult, DataList, MitigationResult, PRETRAIN, utils, StandardDataset |
|
from infosys_responsible_ai_fairness.responsible_ai_fairness import metricsEntity as me |
|
import numpy as np |
|
from bson import ObjectId |
|
from fairness.dao.individual_fairness import Individual_Fairness |
|
from fairness.dao.llm_connection_credentials import LlmConnectionCredentials |
|
from fairness.dao.llm_analysis import LlmAnalysis |
|
from fairness.dao.model_mitigation_mapper import MitigationModel |
|
from fairness.dao.databaseconnection import DataBase |
|
from io import StringIO, BytesIO |
|
from fastapi.responses import FileResponse |
|
from sklearn.metrics import accuracy_score |
|
from fastapi.responses import StreamingResponse |
|
from fairlearn.metrics import demographic_parity_difference, equalized_odds_difference, true_positive_rate, true_negative_rate, false_positive_rate, false_negative_rate |
|
from fairlearn.postprocessing import ThresholdOptimizer |
|
import joblib |
|
import json |
|
import datetime |
|
import time |
|
import os |
|
|
|
import matplotlib.pyplot as plt |
|
import base64 |
|
from io import BytesIO |
|
import requests |
|
from sklearn.neighbors import NearestNeighbors |
|
from fairness.service.preprocessing import FairnessUIservicePreproc |
|
from fairness.dao.WorkBench.FileStoreDb import FileStoreReportDb |
|
from fairness.dao.WorkBench.databaseconnection import DataBase_WB |
|
from fairness.mappers.mappers import BiasAnalyzeResponse, BiasAnalyzeRequest, BiasPretrainMitigationResponse, BiasResults, IndividualFairnessRequest, \ |
|
metricsEntity, MitigateBiasRequest, MitigationAnalyzeResponse, PreprocessingMitigationAnalyzeResponse, PreprocessingMitigateBiasRequest, BatchId |
|
from fairness.dao.WorkBench.Tenet import Tenet |
|
from fairness.dao.WorkBench.Batch import Batch |
|
from fairness.dao.WorkBench.report import Report |
|
from fairness.dao.WorkBench.Data import Dataset, DataAttributes, DataAttributeValues |
|
from fairness.constants.local_constants import * |
|
from fairness.service.service_utils import Utils |
|
from fairness.service.service_monitoring import FairnessAudit |
|
from fairness.service.service_success_rates import SuccessRateService |
|
from fairness.service.inprocessing import InprocessingService |
|
from fairness.service.preprocessing import FairnessUIservicePreproc |
|
import io |
|
from fastapi import HTTPException |
|
import logging |
|
log = logging.getLogger(__name__) |
|
log.setLevel(logging.DEBUG) |
|
DATASET_CONTAINER_NAME = os.getenv('Dt_containerName') |
|
MODEL_CONTAINER_NAME = os.getenv('Model_containerName') |
|
PDF_CONTAINER_NAME=os.getenv("PDF_CONTAINER_NAME") |
|
CSV_CONTAINER_NAME=os.getenv("CSV_CONTAINER_NAME") |
|
ZIP_CONTAINER_NAME=os.getenv("ZIP_CONTAINER_NAME") |
|
class AttributeDict(dict): |
|
__getattr__ = dict.__getitem__ |
|
__setattr__ = dict.__setitem__ |
|
__delattr__ = dict.__delitem__ |
|
|
|
class FairnessWorkbench: |
|
MITIGATED_LOCAL_FILE_PATH="../output/MitigatedData/" |
|
MITIGATED_UPLOAD_PATH="responsible-ai//responsible-ai-fairness//MitigatedData" |
|
LOCAL_FILE_PATH="../output/datasets/" |
|
|
|
def __init__(self, db=None): |
|
if db is not None: |
|
self.db = db |
|
self.fileStore = FileStoreReportDb(self.db) |
|
self.batch = Batch(self.db) |
|
self.tenet = Tenet(self.db) |
|
self.report = Report(self.db) |
|
self.dataset = Dataset(self.db) |
|
self.dataAttributes = DataAttributes(self.db) |
|
self.dataAttributeValues = DataAttributeValues(self.db) |
|
log.info("Mockdb is executed") |
|
|
|
else: |
|
self.db = DataBase().db |
|
self.fileStore = FileStoreReportDb() |
|
self.batch = Batch() |
|
self.tenet = Tenet() |
|
self.report = Report() |
|
self.dataset = Dataset() |
|
self.dataAttributes = DataAttributes() |
|
self.dataAttributeValues = DataAttributeValues() |
|
self.utils = Utils() |
|
self.bias_collection = self.db['bias'] |
|
self.mitigation_collection = self.db['mitigation'] |
|
self.fairness_collection = self.db['fs.files'] |
|
|
|
def wapper_trigger(self, payload: dict): |
|
log.info("payload"+str(payload)) |
|
if payload.Batch_id is None or '': |
|
log.error("Batch Id id missing") |
|
batchId = payload.Batch_id |
|
self.batch.update(batch_id=batchId, value={"Status": "In-progress"}) |
|
tenet_id = self.tenet.find(tenet_name='Fairness') |
|
batch_details = self.batch.find(batch_id=batchId, tenet_id=tenet_id) |
|
datasetId = batch_details['DataId'] |
|
dataset_details = self.dataset.find(Dataset_Id=datasetId) |
|
dataset_attribute_ids = self.dataAttributes.find(dataset_attributes=['mitigationTechnique','mitigationType','methodType']) |
|
log.info("Dataset Attribute Ids:"+ str(dataset_attribute_ids)) |
|
dataset_attribute_values = self.dataAttributeValues.find( |
|
dataset_id=datasetId, dataset_attribute_ids=dataset_attribute_ids, batch_id=batchId) |
|
|
|
log.info("Dataset Attribute Values:"+str(dataset_attribute_values)) |
|
|
|
mitigationTechnique = dataset_attribute_values[0] |
|
mitigationType = dataset_attribute_values[1] |
|
log.info("mitigationTechnique"+mitigationTechnique) |
|
payload = {"Batch_id": batchId} |
|
|
|
if mitigationType=="AUDIT": |
|
methodType = dataset_attribute_values[2] |
|
if methodType=="Generic": |
|
audit=FairnessAudit() |
|
response=audit.workbench_audit(payload) |
|
return response |
|
elif methodType=="Decisive": |
|
success_rates=SuccessRateService() |
|
response=success_rates.workbench_analyze(payload) |
|
return response |
|
if mitigationType=="INPROCESSING": |
|
inprocessingService=InprocessingService() |
|
response=inprocessingService.inprocessing_exponentiated_gradient_reduction(payload) |
|
return response |
|
|
|
if mitigationTechnique == "": |
|
obj = FairnessUIservicePreproc() |
|
payload=BatchId(**payload) |
|
response = obj.return_protected_attrib_analyseDB(payload) |
|
return response |
|
else: |
|
obj=FairnessUIservicePreproc() |
|
payload=BatchId(**payload) |
|
response= obj.return_pretrainMitigation_protected_attrib(payload) |
|
return response |
|
|
|
|
|
def wrapper_download(self, payload: dict): |
|
batchId = payload.Batch_id |
|
report_id = self.report.find(batch_id=batchId) |
|
print(report_id) |
|
reportId = report_id['ReportFileId'] |
|
reportName=report_id['ReportName'] |
|
|
|
print(reportName) |
|
container_name="" |
|
if reportName.endswith('.pdf'): |
|
container_name=PDF_CONTAINER_NAME |
|
elif reportName.endswith('zip'): |
|
container_name=ZIP_CONTAINER_NAME |
|
elif reportName.endswith('.joblib'): |
|
container_name=MODEL_CONTAINER_NAME |
|
else: |
|
container_name=DATASET_CONTAINER_NAME |
|
|
|
if container_name==MODEL_CONTAINER_NAME: |
|
content = self.fileStore.read_chunked_file(reportId,container_name) |
|
response = StreamingResponse(io.BytesIO(content['data']), media_type=content['contentType']) |
|
response.headers["Content-Disposition"] = 'attachment; filename='+reportName |
|
return response |
|
content = self.fileStore.read_file(reportId,container_name) |
|
response = StreamingResponse(io.BytesIO(content['data']), media_type=content['contentType']) |
|
response.headers["Content-Disposition"] = 'attachment; filename='+reportName |
|
return response |