chesstest / app.py
IndianServers's picture
Create app.py
9ddcbad verified
raw
history blame
690 Bytes
import tensorflow as tf
import gradio as gr
import numpy as np
from PIL import Image
# Load the model
model = tf.saved_model.load('./saved_model')
# Define the prediction function
def predict(image):
# Preprocess the image to the required input format
img = np.array(image).astype(np.float32)
img = np.expand_dims(img, axis=0) # Add batch dimension
img = tf.image.resize(img, (640, 640)) # Resize if needed
# Perform inference
predictions = model(img)
return predictions.numpy() # Adjust output processing as needed
# Set up the Gradio interface
interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(type="pil"), outputs="label")
interface.launch()