Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -1,533 +1,549 @@
|
|
1 |
-
"""check torch"""
|
2 |
-
import torch
|
3 |
-
print(torch.__version__)
|
4 |
-
print(torch.version.cuda)
|
5 |
-
print(torch.backends.cudnn.enabled)
|
6 |
-
|
7 |
-
"""global variables"""
|
8 |
-
user_device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
|
10 |
-
"""Import libraries"""
|
11 |
-
import cv2
|
12 |
-
import os
|
13 |
-
import glob
|
14 |
-
from pathlib import Path
|
15 |
-
from collections import Counter
|
16 |
-
import gradio as gr
|
17 |
-
from PIL import Image
|
18 |
-
import numpy as np
|
19 |
-
import time
|
20 |
-
|
21 |
-
"""yolo model loading"""
|
22 |
-
from ultralytics import YOLO
|
23 |
-
# Load model once at startup and keep in memory
|
24 |
-
yoloV11_Small = YOLO("yolo_models_downloaded/yolo11s.pt", task="detect").to(user_device).eval()
|
25 |
-
|
26 |
-
# Image preprocessing function
|
27 |
-
def preprocess_image(image_path, max_size=640):
|
28 |
-
"""
|
29 |
-
Resize image to have longest dimension = max_size while maintaining aspect ratio
|
30 |
-
Returns the resized image and scale factor
|
31 |
-
"""
|
32 |
-
try:
|
33 |
-
# Read image
|
34 |
-
img = cv2.imread(image_path)
|
35 |
-
if img is None:
|
36 |
-
raise IOError(f"Could not open image: {image_path}")
|
37 |
-
|
38 |
-
# Get original dimensions
|
39 |
-
h, w = img.shape[:2]
|
40 |
-
|
41 |
-
# Calculate scale factor
|
42 |
-
scale = min(max_size / max(h, w), 1.0) # Only scale down, not up
|
43 |
-
|
44 |
-
# Skip resizing if image is already smaller than max_size
|
45 |
-
if scale < 1.0:
|
46 |
-
new_h, new_w = int(h * scale), int(w * scale)
|
47 |
-
img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
48 |
-
|
49 |
-
return img, scale
|
50 |
-
except Exception as e:
|
51 |
-
print(f"Error preprocessing image: {e}")
|
52 |
-
return None, 1.0
|
53 |
-
|
54 |
-
""" helper functions"""
|
55 |
-
def return_attributes(result, frame_shape):
|
56 |
-
"""
|
57 |
-
Returns a Dictionary with Lists:
|
58 |
-
"labels", "left_right"
|
59 |
-
"""
|
60 |
-
# Get frame dimensions
|
61 |
-
if frame_shape is not None:
|
62 |
-
try:
|
63 |
-
height, width = frame_shape[:2] # Only get first two dimensions
|
64 |
-
except (AttributeError, ValueError):
|
65 |
-
height, width = 640, 640
|
66 |
-
else:
|
67 |
-
height, width = 640, 640
|
68 |
-
|
69 |
-
# Initialize return lists
|
70 |
-
centers = []
|
71 |
-
l_m_r = []
|
72 |
-
array_objects = []
|
73 |
-
|
74 |
-
try:
|
75 |
-
# Process box coordinates
|
76 |
-
if hasattr(result, 'boxes') and hasattr(result.boxes, 'xywh'):
|
77 |
-
for box in result.boxes.xywh:
|
78 |
-
# Get x coordinate directly as float
|
79 |
-
x = float(box[0].item() if hasattr(box[0], 'item') else box[0])
|
80 |
-
|
81 |
-
# Determine position more efficiently
|
82 |
-
if x < width * 0.25:
|
83 |
-
l_m_r.append("left")
|
84 |
-
elif x > width * 0.75:
|
85 |
-
l_m_r.append("right")
|
86 |
-
else:
|
87 |
-
l_m_r.append("center")
|
88 |
-
|
89 |
-
# Process class labels
|
90 |
-
if hasattr(result, 'boxes') and hasattr(result.boxes, 'cls'):
|
91 |
-
for index in result.boxes.cls:
|
92 |
-
# Convert index to integer
|
93 |
-
idx = int(index.item() if hasattr(index, 'item') else index)
|
94 |
-
array_objects.append(str(result.names[idx]))
|
95 |
-
|
96 |
-
except Exception as e:
|
97 |
-
print(f"Error in return_attributes: {e}")
|
98 |
-
return {"labels": [], "left_right": []}
|
99 |
-
|
100 |
-
return {"labels": array_objects, "left_right": l_m_r}
|
101 |
-
|
102 |
-
def sort_attributes(attributes):
|
103 |
-
"""Sort attributes based on position order"""
|
104 |
-
# Define the desired order
|
105 |
-
position_order = {'center': 0, 'left': 1, 'right': 2}
|
106 |
-
|
107 |
-
# Combine the labels and positions into pairs
|
108 |
-
combined = list(zip(attributes['left_right'], attributes['labels']))
|
109 |
-
|
110 |
-
# Sort the combined list based on the defined position order
|
111 |
-
sorted_combined = sorted(combined, key=lambda x: position_order.get(x[0], float('inf')))
|
112 |
-
|
113 |
-
# Unzip the sorted pairs back into separate lists
|
114 |
-
sorted_positions, sorted_labels = zip(*sorted_combined) if combined else ([], [])
|
115 |
-
|
116 |
-
# Return the sorted attributes as a new dictionary
|
117 |
-
return {
|
118 |
-
'labels': list(sorted_labels),
|
119 |
-
'left_right': list(sorted_positions)
|
120 |
-
}
|
121 |
-
|
122 |
-
def count_objects(labels, directions):
|
123 |
-
"""Group identical labels only when in the same direction"""
|
124 |
-
# Count each (label, direction) pair
|
125 |
-
pair_counts = Counter(zip(labels, directions))
|
126 |
-
|
127 |
-
# Define direction ranking for sorting
|
128 |
-
rank = {'center': 0, 'left': 1, 'right': 2}
|
129 |
-
|
130 |
-
# Prepare a helper to pluralize labels when count > 1
|
131 |
-
def pluralize(word, count):
|
132 |
-
if count == 1:
|
133 |
-
return f"a {word}"
|
134 |
-
# simple English plural rules
|
135 |
-
if any(word.endswith(s) for s in ('s','x','z','sh','ch')):
|
136 |
-
return f"{count} {word}es"
|
137 |
-
if word.endswith('y') and word[-2] not in 'aeiou':
|
138 |
-
return f"{count} {word[:-1]}ies"
|
139 |
-
return f"{count} {word}s"
|
140 |
-
|
141 |
-
# Sort the unique (label, direction) keys by direction rank
|
142 |
-
sorted_pairs = sorted(pair_counts.items(),
|
143 |
-
key=lambda x: rank.get(x[0][1], float('inf')))
|
144 |
-
|
145 |
-
# Build the output lists
|
146 |
-
out_labels = []
|
147 |
-
out_dirs = []
|
148 |
-
for (label, direction), cnt in sorted_pairs:
|
149 |
-
out_labels.append(pluralize(label, cnt))
|
150 |
-
out_dirs.append(direction)
|
151 |
-
|
152 |
-
return {'labels': out_labels, 'left_right': out_dirs}
|
153 |
-
|
154 |
-
def join_items(items):
|
155 |
-
"""Join a list of strings into a human-readable list"""
|
156 |
-
if len(items) == 1:
|
157 |
-
return items[0]
|
158 |
-
if len(items) == 2:
|
159 |
-
return f"{items[0]} and {items[1]}"
|
160 |
-
return ", ".join(items[:-1]) + " and " + items[-1]
|
161 |
-
|
162 |
-
def make_sentence(attrib_dict):
|
163 |
-
"""Build a sentence from attribute dictionary"""
|
164 |
-
labels = attrib_dict["labels"]
|
165 |
-
directions = attrib_dict["left_right"]
|
166 |
-
|
167 |
-
# Return early if no objects detected
|
168 |
-
if not labels:
|
169 |
-
return "No objects detected."
|
170 |
-
|
171 |
-
# Group labels by direction
|
172 |
-
grouped = {"center": [], "left": [], "right": []}
|
173 |
-
for lbl, dr in zip(labels, directions):
|
174 |
-
if dr in grouped:
|
175 |
-
grouped[dr].append(lbl)
|
176 |
-
|
177 |
-
parts = []
|
178 |
-
has_center_objects = bool(grouped["center"])
|
179 |
-
|
180 |
-
# Front clause (center)
|
181 |
-
front = grouped["center"]
|
182 |
-
if front:
|
183 |
-
verb = "is" if len(front) == 1 and not front[0].startswith(('2 ', '3 ', '4 ')) else "are"
|
184 |
-
parts.append(f"There {verb} {join_items(front)} in front of you")
|
185 |
-
|
186 |
-
# Side clauses (left, right)
|
187 |
-
side_parts = []
|
188 |
-
for side in ("left", "right"):
|
189 |
-
items = grouped[side]
|
190 |
-
if items:
|
191 |
-
if len(items) == 1:
|
192 |
-
item = items[0]
|
193 |
-
if item.startswith("a "):
|
194 |
-
side_parts.append(f"There is {item} to your {side}")
|
195 |
-
else:
|
196 |
-
verb = "is" if item.startswith(("1 ", "one ")) else "are"
|
197 |
-
side_parts.append(f"There {verb} {item} to your {side}")
|
198 |
-
else:
|
199 |
-
side_parts.append(f"There are {join_items(items)} to your {side}")
|
200 |
-
|
201 |
-
# Determine whether to use "also"
|
202 |
-
if side_parts and has_center_objects:
|
203 |
-
# Modify first side part to include "also"
|
204 |
-
if side_parts:
|
205 |
-
first_side = side_parts[0]
|
206 |
-
words = first_side.split(" ", 2)
|
207 |
-
if len(words) >= 2:
|
208 |
-
side_parts[0] = f"{words[0]} also {words[1]} {words[2]}"
|
209 |
-
|
210 |
-
parts.extend(side_parts)
|
211 |
-
|
212 |
-
# Join all parts with periods
|
213 |
-
return ". ".join(parts) + "."
|
214 |
-
|
215 |
-
def draw_detection(frame, result, display_labels=True, left_right_lines=True, scale=1.0):
|
216 |
-
"""Draw bounding boxes and labels on the frame with proper scaling"""
|
217 |
-
try:
|
218 |
-
# Use numpy arrays directly when possible to avoid unnecessary data transfers
|
219 |
-
if hasattr(result.boxes, 'xyxy') and hasattr(result.boxes.xyxy, 'cpu'):
|
220 |
-
boxes = result.boxes.xyxy.cpu().numpy()
|
221 |
-
else:
|
222 |
-
boxes = result.boxes.xyxy.numpy() if hasattr(result.boxes.xyxy, 'numpy') else result.boxes.xyxy
|
223 |
-
|
224 |
-
if hasattr(result.boxes, 'cls') and hasattr(result.boxes.cls, 'cpu'):
|
225 |
-
class_ids = result.boxes.cls.cpu().numpy().astype(int)
|
226 |
-
else:
|
227 |
-
class_ids = result.boxes.cls.numpy().astype(int) if hasattr(result.boxes.cls, 'numpy') else result.boxes.cls.astype(int)
|
228 |
-
|
229 |
-
class_names = result.names
|
230 |
-
|
231 |
-
# If image was resized, adjust the boxes back to original size
|
232 |
-
# The boxes are in the coordinates of the resized image, so we need to scale them back
|
233 |
-
if scale != 1.0:
|
234 |
-
boxes = boxes / scale
|
235 |
-
|
236 |
-
for index in range(len(boxes)):
|
237 |
-
box = boxes[index]
|
238 |
-
class_id = class_ids[index]
|
239 |
-
label = str(class_names[class_id])
|
240 |
-
|
241 |
-
# Ensure box coordinates are integers
|
242 |
-
x1, y1, x2, y2 = map(int, box)
|
243 |
-
|
244 |
-
# Draw rectangle
|
245 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
246 |
-
|
247 |
-
if display_labels:
|
248 |
-
# Add a background for text to make it more readable
|
249 |
-
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2)[0]
|
250 |
-
cv2.rectangle(frame, (x1, y1-text_size[1]-10), (x1+text_size[0], y1), (0, 0, 0), -1)
|
251 |
-
cv2.putText(frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 2)
|
252 |
-
|
253 |
-
if left_right_lines:
|
254 |
-
h, w = frame.shape[:2]
|
255 |
-
cv2.line(frame, (int(w*.25), 0), (int(w*0.25), h), (0, 255, 0), 2)
|
256 |
-
cv2.line(frame, (int(w*.75), 0), (int(w*0.75), h), (0, 255, 0), 2)
|
257 |
-
|
258 |
-
except Exception as e:
|
259 |
-
print(f"Error drawing detections: {e}")
|
260 |
-
import traceback
|
261 |
-
traceback.print_exc()
|
262 |
-
|
263 |
-
def add_sentence_to_image(frame, sentence):
|
264 |
-
"""Add descriptive sentence to bottom of image"""
|
265 |
-
if not sentence:
|
266 |
-
return
|
267 |
-
|
268 |
-
h, w = frame.shape[:2]
|
269 |
-
|
270 |
-
# Calculate font size based on image dimensions
|
271 |
-
font_scale = min(w, h) / 1000 # Scale font with image size
|
272 |
-
font_scale = max(0.6, min(5, font_scale)) # Keep between 0.6 and 1.2
|
273 |
-
|
274 |
-
# Create a semi-transparent background for better text visibility
|
275 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
276 |
-
text_size = cv2.getTextSize(sentence, font, font_scale, 2)[0]
|
277 |
-
|
278 |
-
# Split text into multiple lines if too long
|
279 |
-
max_width = int(w * 0.9) # Maximum width for text is 90% of image width
|
280 |
-
if text_size[0] > max_width:
|
281 |
-
words = sentence.split()
|
282 |
-
lines = []
|
283 |
-
current_line = []
|
284 |
-
|
285 |
-
for word in words:
|
286 |
-
test_line = ' '.join(current_line + [word])
|
287 |
-
test_size = cv2.getTextSize(test_line, font, font_scale, 2)[0]
|
288 |
-
|
289 |
-
if test_size[0] <= max_width:
|
290 |
-
current_line.append(word)
|
291 |
-
else:
|
292 |
-
lines.append(' '.join(current_line))
|
293 |
-
current_line = [word]
|
294 |
-
|
295 |
-
if current_line:
|
296 |
-
lines.append(' '.join(current_line))
|
297 |
-
|
298 |
-
# Draw background and text for each line
|
299 |
-
padding = 10
|
300 |
-
line_height = text_size[1] + padding
|
301 |
-
bg_height = (line_height * len(lines)) + padding * 2
|
302 |
-
|
303 |
-
# Create semi-transparent overlay for text background
|
304 |
-
overlay = frame.copy()
|
305 |
-
bg_y1 = h - bg_height
|
306 |
-
cv2.rectangle(overlay, (0, bg_y1), (w, h), (0, 0, 0), -1)
|
307 |
-
cv2.addWeighted(overlay, 0.6, frame, 0.4, 0, frame)
|
308 |
-
|
309 |
-
# Draw each line of text
|
310 |
-
for i, line in enumerate(lines):
|
311 |
-
y_pos = bg_y1 + padding + (i + 1) * line_height - padding//2
|
312 |
-
cv2.putText(frame, line, (padding, y_pos), font, font_scale, (255, 255, 255), 2)
|
313 |
-
else:
|
314 |
-
# For short sentences, just add a single line of text
|
315 |
-
padding = 10
|
316 |
-
|
317 |
-
# Create semi-transparent overlay for text background
|
318 |
-
overlay = frame.copy()
|
319 |
-
bg_y1 = h - text_size[1] - padding * 3
|
320 |
-
cv2.rectangle(overlay, (0, bg_y1), (w, h), (0, 0, 0), -1)
|
321 |
-
cv2.addWeighted(overlay, 0.6, frame, 0.4, 0, frame)
|
322 |
-
|
323 |
-
# Position text in bottom right with padding
|
324 |
-
cv2.putText(frame, sentence, (padding, h - padding), font, font_scale, (255, 255, 255), 2)
|
325 |
-
|
326 |
-
"""process audio / video"""
|
327 |
-
def process_image(image_path, confidence=0.5):
|
328 |
-
"""
|
329 |
-
Process a single image file with YOLO detection
|
330 |
-
Adds a descriptive sentence at the bottom of the image
|
331 |
-
Returns the processed image
|
332 |
-
"""
|
333 |
-
if not image_path:
|
334 |
-
return None
|
335 |
-
|
336 |
-
try:
|
337 |
-
start_time = time.time()
|
338 |
-
|
339 |
-
# Store original image for drawing results
|
340 |
-
original_img = cv2.imread(image_path)
|
341 |
-
if original_img is None:
|
342 |
-
return None
|
343 |
-
|
344 |
-
# Preprocess image - resize to max 640px on longest side for YOLO processing
|
345 |
-
processed_img, scale_factor = preprocess_image(image_path, max_size=640)
|
346 |
-
if processed_img is None:
|
347 |
-
return None
|
348 |
-
|
349 |
-
# Run YOLO inference with optimized settings on the RESIZED image
|
350 |
-
results = yoloV11_Small(
|
351 |
-
processed_img,
|
352 |
-
conf=confidence,
|
353 |
-
verbose=False,
|
354 |
-
iou=0.5,
|
355 |
-
agnostic_nms=True,
|
356 |
-
device=user_device
|
357 |
-
)
|
358 |
-
|
359 |
-
# Create a copy of the ORIGINAL image for drawing
|
360 |
-
output_frame = original_img.copy()
|
361 |
-
|
362 |
-
# Process the detections
|
363 |
-
current_sentence = "No objects detected."
|
364 |
-
for result in results:
|
365 |
-
# Get original frame shape for attribute calculation
|
366 |
-
frame_shape = processed_img.shape # Use the processed image shape for attribute calculation
|
367 |
-
|
368 |
-
# Draw detections on the ORIGINAL frame with proper scaling
|
369 |
-
draw_detection(output_frame, result, display_labels=True, left_right_lines=True, scale=scale_factor)
|
370 |
-
|
371 |
-
# Process attributes based on the PROCESSED image (as that's what YOLO saw)
|
372 |
-
attributes = return_attributes(result, frame_shape)
|
373 |
-
|
374 |
-
if attributes["labels"]:
|
375 |
-
attrs = sort_attributes(attributes)
|
376 |
-
counted = count_objects(attrs["labels"], attrs["left_right"])
|
377 |
-
current_sentence = make_sentence(counted)
|
378 |
-
|
379 |
-
# Add the sentence to the image
|
380 |
-
add_sentence_to_image(output_frame, current_sentence)
|
381 |
-
|
382 |
-
# Convert from BGR to RGB for displaying in Gradio
|
383 |
-
output_frame_rgb = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
384 |
-
|
385 |
-
end_time = time.time()
|
386 |
-
print(f"Processing time: {end_time - start_time:.3f} seconds")
|
387 |
-
|
388 |
-
return output_frame_rgb
|
389 |
-
|
390 |
-
except Exception as e:
|
391 |
-
print(f"Image processing error: {e}")
|
392 |
-
import traceback
|
393 |
-
traceback.print_exc()
|
394 |
-
return None
|
395 |
-
|
396 |
-
|
397 |
-
"""gradio app for image processing"""
|
398 |
-
|
399 |
-
EXAMPLES_FOLDER = "examples"
|
400 |
-
TEMP_FILES_FOLDER = Path("temp_files")
|
401 |
-
|
402 |
-
# Ensure temp folder exists
|
403 |
-
if not os.path.exists(TEMP_FILES_FOLDER):
|
404 |
-
os.makedirs(TEMP_FILES_FOLDER)
|
405 |
-
|
406 |
-
# Function to load example images from a folder
|
407 |
-
def load_examples_from_folder(folder_path=EXAMPLES_FOLDER):
|
408 |
-
"""Load all images from a specified folder as examples"""
|
409 |
-
if not os.path.exists(folder_path):
|
410 |
-
os.makedirs(folder_path)
|
411 |
-
print(f"Created examples folder at {folder_path}")
|
412 |
-
return []
|
413 |
-
|
414 |
-
# Valid file extensions for images only
|
415 |
-
image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".webp"]
|
416 |
-
|
417 |
-
# Get all image files in the folder efficiently
|
418 |
-
example_files = []
|
419 |
-
for ext in image_extensions:
|
420 |
-
example_files.extend(glob.glob(os.path.join(folder_path, f"*{ext}")))
|
421 |
-
example_files.extend(glob.glob(os.path.join(folder_path, f"*{ext.upper()}")))
|
422 |
-
|
423 |
-
print(f"Loaded {len(example_files)} example images from {folder_path}")
|
424 |
-
return example_files
|
425 |
-
|
426 |
-
# Load example images once at startup
|
427 |
-
raw = load_examples_from_folder()
|
428 |
-
unique = list(dict.fromkeys(raw)) # remove duplicates
|
429 |
-
example_images = [(p, None) for p in unique] # tell Gallery about each image
|
430 |
-
|
431 |
-
def select_from_gallery(evt: gr.SelectData):
|
432 |
-
"""Handle selection from the gallery"""
|
433 |
-
selected_path = example_images[evt.index][0]
|
434 |
-
return selected_path
|
435 |
-
|
436 |
-
custom_css = """
|
437 |
-
/* Allow auto height for content areas */
|
438 |
-
.fixed-height.svelte-842rpi.svelte-842rpi {
|
439 |
-
min-height: 0 !important;
|
440 |
-
max-height: none !important;
|
441 |
-
height: auto !important;
|
442 |
-
}
|
443 |
-
|
444 |
-
/* Maintain responsive behavior */
|
445 |
-
@media (min-width: 1280px) {
|
446 |
-
.fixed-height.svelte-842rpi.svelte-842rpi {
|
447 |
-
min-height: 0 !important;
|
448 |
-
max-height: none !important;
|
449 |
-
height: auto !important;
|
450 |
-
}
|
451 |
-
}
|
452 |
-
"""
|
453 |
-
|
454 |
-
# Create the Gradio interface
|
455 |
-
with gr.Blocks(title="Object Detection and Description", css=custom_css) as demo:
|
456 |
-
gr.Markdown("## 🔍 Object Detection with Scene Description")
|
457 |
-
gr.Markdown("Upload or select an image to detect objects and get a descriptive sentence.")
|
458 |
-
|
459 |
-
# Store current image path
|
460 |
-
current_image = gr.State()
|
461 |
-
|
462 |
-
with gr.Row():
|
463 |
-
with gr.Column(scale=1):
|
464 |
-
# Image input component
|
465 |
-
image_input = gr.Image(label="Upload Image", type="filepath")
|
466 |
-
|
467 |
-
# Controls
|
468 |
-
upload_btn = gr.UploadButton(
|
469 |
-
"Upload Image",
|
470 |
-
file_types=["image"]
|
471 |
-
)
|
472 |
-
|
473 |
-
confidence = gr.Slider(
|
474 |
-
minimum=0.1,
|
475 |
-
maximum=0.9,
|
476 |
-
value=0.5,
|
477 |
-
step=0.025,
|
478 |
-
label="Detection Confidence"
|
479 |
-
)
|
480 |
-
|
481 |
-
with gr.Column(scale=1):
|
482 |
-
# Output component
|
483 |
-
image_output = gr.Image(label="Scene Analysis")
|
484 |
-
|
485 |
-
# Example gallery at bottom
|
486 |
-
with gr.Row(variant="panel"):
|
487 |
-
if example_images:
|
488 |
-
examples_gallery = gr.Gallery(
|
489 |
-
value=example_images,
|
490 |
-
label=f"Example Images (Click to Select) - {len(example_images)} examples from {EXAMPLES_FOLDER}",
|
491 |
-
columns=6,
|
492 |
-
elem_id="image_gallery",
|
493 |
-
allow_preview=False,
|
494 |
-
elem_classes=["centered-examples"]
|
495 |
-
)
|
496 |
-
else:
|
497 |
-
gr.Markdown(
|
498 |
-
f"No example images found in {EXAMPLES_FOLDER} folder. Add image files to see examples."
|
499 |
-
)
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
)
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
demo.launch(share=False)
|
|
|
1 |
+
"""check torch"""
|
2 |
+
import torch
|
3 |
+
print(torch.__version__)
|
4 |
+
print(torch.version.cuda)
|
5 |
+
print(torch.backends.cudnn.enabled)
|
6 |
+
|
7 |
+
"""global variables"""
|
8 |
+
user_device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
"""Import libraries"""
|
11 |
+
import cv2
|
12 |
+
import os
|
13 |
+
import glob
|
14 |
+
from pathlib import Path
|
15 |
+
from collections import Counter
|
16 |
+
import gradio as gr
|
17 |
+
from PIL import Image
|
18 |
+
import numpy as np
|
19 |
+
import time
|
20 |
+
|
21 |
+
"""yolo model loading"""
|
22 |
+
from ultralytics import YOLO
|
23 |
+
# Load model once at startup and keep in memory
|
24 |
+
yoloV11_Small = YOLO("yolo_models_downloaded/yolo11s.pt", task="detect").to(user_device).eval()
|
25 |
+
|
26 |
+
# Image preprocessing function
|
27 |
+
def preprocess_image(image_path, max_size=640):
|
28 |
+
"""
|
29 |
+
Resize image to have longest dimension = max_size while maintaining aspect ratio
|
30 |
+
Returns the resized image and scale factor
|
31 |
+
"""
|
32 |
+
try:
|
33 |
+
# Read image
|
34 |
+
img = cv2.imread(image_path)
|
35 |
+
if img is None:
|
36 |
+
raise IOError(f"Could not open image: {image_path}")
|
37 |
+
|
38 |
+
# Get original dimensions
|
39 |
+
h, w = img.shape[:2]
|
40 |
+
|
41 |
+
# Calculate scale factor
|
42 |
+
scale = min(max_size / max(h, w), 1.0) # Only scale down, not up
|
43 |
+
|
44 |
+
# Skip resizing if image is already smaller than max_size
|
45 |
+
if scale < 1.0:
|
46 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
47 |
+
img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
48 |
+
|
49 |
+
return img, scale
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error preprocessing image: {e}")
|
52 |
+
return None, 1.0
|
53 |
+
|
54 |
+
""" helper functions"""
|
55 |
+
def return_attributes(result, frame_shape):
|
56 |
+
"""
|
57 |
+
Returns a Dictionary with Lists:
|
58 |
+
"labels", "left_right"
|
59 |
+
"""
|
60 |
+
# Get frame dimensions
|
61 |
+
if frame_shape is not None:
|
62 |
+
try:
|
63 |
+
height, width = frame_shape[:2] # Only get first two dimensions
|
64 |
+
except (AttributeError, ValueError):
|
65 |
+
height, width = 640, 640
|
66 |
+
else:
|
67 |
+
height, width = 640, 640
|
68 |
+
|
69 |
+
# Initialize return lists
|
70 |
+
centers = []
|
71 |
+
l_m_r = []
|
72 |
+
array_objects = []
|
73 |
+
|
74 |
+
try:
|
75 |
+
# Process box coordinates
|
76 |
+
if hasattr(result, 'boxes') and hasattr(result.boxes, 'xywh'):
|
77 |
+
for box in result.boxes.xywh:
|
78 |
+
# Get x coordinate directly as float
|
79 |
+
x = float(box[0].item() if hasattr(box[0], 'item') else box[0])
|
80 |
+
|
81 |
+
# Determine position more efficiently
|
82 |
+
if x < width * 0.25:
|
83 |
+
l_m_r.append("left")
|
84 |
+
elif x > width * 0.75:
|
85 |
+
l_m_r.append("right")
|
86 |
+
else:
|
87 |
+
l_m_r.append("center")
|
88 |
+
|
89 |
+
# Process class labels
|
90 |
+
if hasattr(result, 'boxes') and hasattr(result.boxes, 'cls'):
|
91 |
+
for index in result.boxes.cls:
|
92 |
+
# Convert index to integer
|
93 |
+
idx = int(index.item() if hasattr(index, 'item') else index)
|
94 |
+
array_objects.append(str(result.names[idx]))
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error in return_attributes: {e}")
|
98 |
+
return {"labels": [], "left_right": []}
|
99 |
+
|
100 |
+
return {"labels": array_objects, "left_right": l_m_r}
|
101 |
+
|
102 |
+
def sort_attributes(attributes):
|
103 |
+
"""Sort attributes based on position order"""
|
104 |
+
# Define the desired order
|
105 |
+
position_order = {'center': 0, 'left': 1, 'right': 2}
|
106 |
+
|
107 |
+
# Combine the labels and positions into pairs
|
108 |
+
combined = list(zip(attributes['left_right'], attributes['labels']))
|
109 |
+
|
110 |
+
# Sort the combined list based on the defined position order
|
111 |
+
sorted_combined = sorted(combined, key=lambda x: position_order.get(x[0], float('inf')))
|
112 |
+
|
113 |
+
# Unzip the sorted pairs back into separate lists
|
114 |
+
sorted_positions, sorted_labels = zip(*sorted_combined) if combined else ([], [])
|
115 |
+
|
116 |
+
# Return the sorted attributes as a new dictionary
|
117 |
+
return {
|
118 |
+
'labels': list(sorted_labels),
|
119 |
+
'left_right': list(sorted_positions)
|
120 |
+
}
|
121 |
+
|
122 |
+
def count_objects(labels, directions):
|
123 |
+
"""Group identical labels only when in the same direction"""
|
124 |
+
# Count each (label, direction) pair
|
125 |
+
pair_counts = Counter(zip(labels, directions))
|
126 |
+
|
127 |
+
# Define direction ranking for sorting
|
128 |
+
rank = {'center': 0, 'left': 1, 'right': 2}
|
129 |
+
|
130 |
+
# Prepare a helper to pluralize labels when count > 1
|
131 |
+
def pluralize(word, count):
|
132 |
+
if count == 1:
|
133 |
+
return f"a {word}"
|
134 |
+
# simple English plural rules
|
135 |
+
if any(word.endswith(s) for s in ('s','x','z','sh','ch')):
|
136 |
+
return f"{count} {word}es"
|
137 |
+
if word.endswith('y') and word[-2] not in 'aeiou':
|
138 |
+
return f"{count} {word[:-1]}ies"
|
139 |
+
return f"{count} {word}s"
|
140 |
+
|
141 |
+
# Sort the unique (label, direction) keys by direction rank
|
142 |
+
sorted_pairs = sorted(pair_counts.items(),
|
143 |
+
key=lambda x: rank.get(x[0][1], float('inf')))
|
144 |
+
|
145 |
+
# Build the output lists
|
146 |
+
out_labels = []
|
147 |
+
out_dirs = []
|
148 |
+
for (label, direction), cnt in sorted_pairs:
|
149 |
+
out_labels.append(pluralize(label, cnt))
|
150 |
+
out_dirs.append(direction)
|
151 |
+
|
152 |
+
return {'labels': out_labels, 'left_right': out_dirs}
|
153 |
+
|
154 |
+
def join_items(items):
|
155 |
+
"""Join a list of strings into a human-readable list"""
|
156 |
+
if len(items) == 1:
|
157 |
+
return items[0]
|
158 |
+
if len(items) == 2:
|
159 |
+
return f"{items[0]} and {items[1]}"
|
160 |
+
return ", ".join(items[:-1]) + " and " + items[-1]
|
161 |
+
|
162 |
+
def make_sentence(attrib_dict):
|
163 |
+
"""Build a sentence from attribute dictionary"""
|
164 |
+
labels = attrib_dict["labels"]
|
165 |
+
directions = attrib_dict["left_right"]
|
166 |
+
|
167 |
+
# Return early if no objects detected
|
168 |
+
if not labels:
|
169 |
+
return "No objects detected."
|
170 |
+
|
171 |
+
# Group labels by direction
|
172 |
+
grouped = {"center": [], "left": [], "right": []}
|
173 |
+
for lbl, dr in zip(labels, directions):
|
174 |
+
if dr in grouped:
|
175 |
+
grouped[dr].append(lbl)
|
176 |
+
|
177 |
+
parts = []
|
178 |
+
has_center_objects = bool(grouped["center"])
|
179 |
+
|
180 |
+
# Front clause (center)
|
181 |
+
front = grouped["center"]
|
182 |
+
if front:
|
183 |
+
verb = "is" if len(front) == 1 and not front[0].startswith(('2 ', '3 ', '4 ')) else "are"
|
184 |
+
parts.append(f"There {verb} {join_items(front)} in front of you")
|
185 |
+
|
186 |
+
# Side clauses (left, right)
|
187 |
+
side_parts = []
|
188 |
+
for side in ("left", "right"):
|
189 |
+
items = grouped[side]
|
190 |
+
if items:
|
191 |
+
if len(items) == 1:
|
192 |
+
item = items[0]
|
193 |
+
if item.startswith("a "):
|
194 |
+
side_parts.append(f"There is {item} to your {side}")
|
195 |
+
else:
|
196 |
+
verb = "is" if item.startswith(("1 ", "one ")) else "are"
|
197 |
+
side_parts.append(f"There {verb} {item} to your {side}")
|
198 |
+
else:
|
199 |
+
side_parts.append(f"There are {join_items(items)} to your {side}")
|
200 |
+
|
201 |
+
# Determine whether to use "also"
|
202 |
+
if side_parts and has_center_objects:
|
203 |
+
# Modify first side part to include "also"
|
204 |
+
if side_parts:
|
205 |
+
first_side = side_parts[0]
|
206 |
+
words = first_side.split(" ", 2)
|
207 |
+
if len(words) >= 2:
|
208 |
+
side_parts[0] = f"{words[0]} also {words[1]} {words[2]}"
|
209 |
+
|
210 |
+
parts.extend(side_parts)
|
211 |
+
|
212 |
+
# Join all parts with periods
|
213 |
+
return ". ".join(parts) + "."
|
214 |
+
|
215 |
+
def draw_detection(frame, result, display_labels=True, left_right_lines=True, scale=1.0):
|
216 |
+
"""Draw bounding boxes and labels on the frame with proper scaling"""
|
217 |
+
try:
|
218 |
+
# Use numpy arrays directly when possible to avoid unnecessary data transfers
|
219 |
+
if hasattr(result.boxes, 'xyxy') and hasattr(result.boxes.xyxy, 'cpu'):
|
220 |
+
boxes = result.boxes.xyxy.cpu().numpy()
|
221 |
+
else:
|
222 |
+
boxes = result.boxes.xyxy.numpy() if hasattr(result.boxes.xyxy, 'numpy') else result.boxes.xyxy
|
223 |
+
|
224 |
+
if hasattr(result.boxes, 'cls') and hasattr(result.boxes.cls, 'cpu'):
|
225 |
+
class_ids = result.boxes.cls.cpu().numpy().astype(int)
|
226 |
+
else:
|
227 |
+
class_ids = result.boxes.cls.numpy().astype(int) if hasattr(result.boxes.cls, 'numpy') else result.boxes.cls.astype(int)
|
228 |
+
|
229 |
+
class_names = result.names
|
230 |
+
|
231 |
+
# If image was resized, adjust the boxes back to original size
|
232 |
+
# The boxes are in the coordinates of the resized image, so we need to scale them back
|
233 |
+
if scale != 1.0:
|
234 |
+
boxes = boxes / scale
|
235 |
+
|
236 |
+
for index in range(len(boxes)):
|
237 |
+
box = boxes[index]
|
238 |
+
class_id = class_ids[index]
|
239 |
+
label = str(class_names[class_id])
|
240 |
+
|
241 |
+
# Ensure box coordinates are integers
|
242 |
+
x1, y1, x2, y2 = map(int, box)
|
243 |
+
|
244 |
+
# Draw rectangle
|
245 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
246 |
+
|
247 |
+
if display_labels:
|
248 |
+
# Add a background for text to make it more readable
|
249 |
+
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2)[0]
|
250 |
+
cv2.rectangle(frame, (x1, y1-text_size[1]-10), (x1+text_size[0], y1), (0, 0, 0), -1)
|
251 |
+
cv2.putText(frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 2)
|
252 |
+
|
253 |
+
if left_right_lines:
|
254 |
+
h, w = frame.shape[:2]
|
255 |
+
cv2.line(frame, (int(w*.25), 0), (int(w*0.25), h), (0, 255, 0), 2)
|
256 |
+
cv2.line(frame, (int(w*.75), 0), (int(w*0.75), h), (0, 255, 0), 2)
|
257 |
+
|
258 |
+
except Exception as e:
|
259 |
+
print(f"Error drawing detections: {e}")
|
260 |
+
import traceback
|
261 |
+
traceback.print_exc()
|
262 |
+
|
263 |
+
def add_sentence_to_image(frame, sentence):
|
264 |
+
"""Add descriptive sentence to bottom of image"""
|
265 |
+
if not sentence:
|
266 |
+
return
|
267 |
+
|
268 |
+
h, w = frame.shape[:2]
|
269 |
+
|
270 |
+
# Calculate font size based on image dimensions
|
271 |
+
font_scale = min(w, h) / 1000 # Scale font with image size
|
272 |
+
font_scale = max(0.6, min(5, font_scale)) # Keep between 0.6 and 1.2
|
273 |
+
|
274 |
+
# Create a semi-transparent background for better text visibility
|
275 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
276 |
+
text_size = cv2.getTextSize(sentence, font, font_scale, 2)[0]
|
277 |
+
|
278 |
+
# Split text into multiple lines if too long
|
279 |
+
max_width = int(w * 0.9) # Maximum width for text is 90% of image width
|
280 |
+
if text_size[0] > max_width:
|
281 |
+
words = sentence.split()
|
282 |
+
lines = []
|
283 |
+
current_line = []
|
284 |
+
|
285 |
+
for word in words:
|
286 |
+
test_line = ' '.join(current_line + [word])
|
287 |
+
test_size = cv2.getTextSize(test_line, font, font_scale, 2)[0]
|
288 |
+
|
289 |
+
if test_size[0] <= max_width:
|
290 |
+
current_line.append(word)
|
291 |
+
else:
|
292 |
+
lines.append(' '.join(current_line))
|
293 |
+
current_line = [word]
|
294 |
+
|
295 |
+
if current_line:
|
296 |
+
lines.append(' '.join(current_line))
|
297 |
+
|
298 |
+
# Draw background and text for each line
|
299 |
+
padding = 10
|
300 |
+
line_height = text_size[1] + padding
|
301 |
+
bg_height = (line_height * len(lines)) + padding * 2
|
302 |
+
|
303 |
+
# Create semi-transparent overlay for text background
|
304 |
+
overlay = frame.copy()
|
305 |
+
bg_y1 = h - bg_height
|
306 |
+
cv2.rectangle(overlay, (0, bg_y1), (w, h), (0, 0, 0), -1)
|
307 |
+
cv2.addWeighted(overlay, 0.6, frame, 0.4, 0, frame)
|
308 |
+
|
309 |
+
# Draw each line of text
|
310 |
+
for i, line in enumerate(lines):
|
311 |
+
y_pos = bg_y1 + padding + (i + 1) * line_height - padding//2
|
312 |
+
cv2.putText(frame, line, (padding, y_pos), font, font_scale, (255, 255, 255), 2)
|
313 |
+
else:
|
314 |
+
# For short sentences, just add a single line of text
|
315 |
+
padding = 10
|
316 |
+
|
317 |
+
# Create semi-transparent overlay for text background
|
318 |
+
overlay = frame.copy()
|
319 |
+
bg_y1 = h - text_size[1] - padding * 3
|
320 |
+
cv2.rectangle(overlay, (0, bg_y1), (w, h), (0, 0, 0), -1)
|
321 |
+
cv2.addWeighted(overlay, 0.6, frame, 0.4, 0, frame)
|
322 |
+
|
323 |
+
# Position text in bottom right with padding
|
324 |
+
cv2.putText(frame, sentence, (padding, h - padding), font, font_scale, (255, 255, 255), 2)
|
325 |
+
|
326 |
+
"""process audio / video"""
|
327 |
+
def process_image(image_path, confidence=0.5):
|
328 |
+
"""
|
329 |
+
Process a single image file with YOLO detection
|
330 |
+
Adds a descriptive sentence at the bottom of the image
|
331 |
+
Returns the processed image
|
332 |
+
"""
|
333 |
+
if not image_path:
|
334 |
+
return None
|
335 |
+
|
336 |
+
try:
|
337 |
+
start_time = time.time()
|
338 |
+
|
339 |
+
# Store original image for drawing results
|
340 |
+
original_img = cv2.imread(image_path)
|
341 |
+
if original_img is None:
|
342 |
+
return None
|
343 |
+
|
344 |
+
# Preprocess image - resize to max 640px on longest side for YOLO processing
|
345 |
+
processed_img, scale_factor = preprocess_image(image_path, max_size=640)
|
346 |
+
if processed_img is None:
|
347 |
+
return None
|
348 |
+
|
349 |
+
# Run YOLO inference with optimized settings on the RESIZED image
|
350 |
+
results = yoloV11_Small(
|
351 |
+
processed_img,
|
352 |
+
conf=confidence,
|
353 |
+
verbose=False,
|
354 |
+
iou=0.5,
|
355 |
+
agnostic_nms=True,
|
356 |
+
device=user_device
|
357 |
+
)
|
358 |
+
|
359 |
+
# Create a copy of the ORIGINAL image for drawing
|
360 |
+
output_frame = original_img.copy()
|
361 |
+
|
362 |
+
# Process the detections
|
363 |
+
current_sentence = "No objects detected."
|
364 |
+
for result in results:
|
365 |
+
# Get original frame shape for attribute calculation
|
366 |
+
frame_shape = processed_img.shape # Use the processed image shape for attribute calculation
|
367 |
+
|
368 |
+
# Draw detections on the ORIGINAL frame with proper scaling
|
369 |
+
draw_detection(output_frame, result, display_labels=True, left_right_lines=True, scale=scale_factor)
|
370 |
+
|
371 |
+
# Process attributes based on the PROCESSED image (as that's what YOLO saw)
|
372 |
+
attributes = return_attributes(result, frame_shape)
|
373 |
+
|
374 |
+
if attributes["labels"]:
|
375 |
+
attrs = sort_attributes(attributes)
|
376 |
+
counted = count_objects(attrs["labels"], attrs["left_right"])
|
377 |
+
current_sentence = make_sentence(counted)
|
378 |
+
|
379 |
+
# Add the sentence to the image
|
380 |
+
add_sentence_to_image(output_frame, current_sentence)
|
381 |
+
|
382 |
+
# Convert from BGR to RGB for displaying in Gradio
|
383 |
+
output_frame_rgb = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
|
384 |
+
|
385 |
+
end_time = time.time()
|
386 |
+
print(f"Processing time: {end_time - start_time:.3f} seconds")
|
387 |
+
|
388 |
+
return output_frame_rgb
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
print(f"Image processing error: {e}")
|
392 |
+
import traceback
|
393 |
+
traceback.print_exc()
|
394 |
+
return None
|
395 |
+
|
396 |
+
|
397 |
+
"""gradio app for image processing"""
|
398 |
+
|
399 |
+
EXAMPLES_FOLDER = "examples"
|
400 |
+
TEMP_FILES_FOLDER = Path("temp_files")
|
401 |
+
|
402 |
+
# Ensure temp folder exists
|
403 |
+
if not os.path.exists(TEMP_FILES_FOLDER):
|
404 |
+
os.makedirs(TEMP_FILES_FOLDER)
|
405 |
+
|
406 |
+
# Function to load example images from a folder
|
407 |
+
def load_examples_from_folder(folder_path=EXAMPLES_FOLDER):
|
408 |
+
"""Load all images from a specified folder as examples"""
|
409 |
+
if not os.path.exists(folder_path):
|
410 |
+
os.makedirs(folder_path)
|
411 |
+
print(f"Created examples folder at {folder_path}")
|
412 |
+
return []
|
413 |
+
|
414 |
+
# Valid file extensions for images only
|
415 |
+
image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".webp"]
|
416 |
+
|
417 |
+
# Get all image files in the folder efficiently
|
418 |
+
example_files = []
|
419 |
+
for ext in image_extensions:
|
420 |
+
example_files.extend(glob.glob(os.path.join(folder_path, f"*{ext}")))
|
421 |
+
example_files.extend(glob.glob(os.path.join(folder_path, f"*{ext.upper()}")))
|
422 |
+
|
423 |
+
print(f"Loaded {len(example_files)} example images from {folder_path}")
|
424 |
+
return example_files
|
425 |
+
|
426 |
+
# Load example images once at startup
|
427 |
+
raw = load_examples_from_folder()
|
428 |
+
unique = list(dict.fromkeys(raw)) # remove duplicates
|
429 |
+
example_images = [(p, None) for p in unique] # tell Gallery about each image
|
430 |
+
|
431 |
+
def select_from_gallery(evt: gr.SelectData):
|
432 |
+
"""Handle selection from the gallery"""
|
433 |
+
selected_path = example_images[evt.index][0]
|
434 |
+
return selected_path
|
435 |
+
|
436 |
+
custom_css = """
|
437 |
+
/* Allow auto height for content areas */
|
438 |
+
.fixed-height.svelte-842rpi.svelte-842rpi {
|
439 |
+
min-height: 0 !important;
|
440 |
+
max-height: none !important;
|
441 |
+
height: auto !important;
|
442 |
+
}
|
443 |
+
|
444 |
+
/* Maintain responsive behavior */
|
445 |
+
@media (min-width: 1280px) {
|
446 |
+
.fixed-height.svelte-842rpi.svelte-842rpi {
|
447 |
+
min-height: 0 !important;
|
448 |
+
max-height: none !important;
|
449 |
+
height: auto !important;
|
450 |
+
}
|
451 |
+
}
|
452 |
+
"""
|
453 |
+
|
454 |
+
# Create the Gradio interface
|
455 |
+
with gr.Blocks(title="VoiceView: Object Detection and Description", css=custom_css) as demo:
|
456 |
+
gr.Markdown("## 🔍 VoiceView: Object Detection with Scene Description")
|
457 |
+
gr.Markdown("Upload or select an image to detect objects and get a descriptive sentence.")
|
458 |
+
|
459 |
+
# Store current image path
|
460 |
+
current_image = gr.State()
|
461 |
+
|
462 |
+
with gr.Row():
|
463 |
+
with gr.Column(scale=1):
|
464 |
+
# Image input component
|
465 |
+
image_input = gr.Image(label="Upload Image", type="filepath")
|
466 |
+
|
467 |
+
# Controls
|
468 |
+
upload_btn = gr.UploadButton(
|
469 |
+
"Upload Image",
|
470 |
+
file_types=["image"]
|
471 |
+
)
|
472 |
+
|
473 |
+
confidence = gr.Slider(
|
474 |
+
minimum=0.1,
|
475 |
+
maximum=0.9,
|
476 |
+
value=0.5,
|
477 |
+
step=0.025,
|
478 |
+
label="Detection Confidence"
|
479 |
+
)
|
480 |
+
|
481 |
+
with gr.Column(scale=1):
|
482 |
+
# Output component
|
483 |
+
image_output = gr.Image(label="Scene Analysis")
|
484 |
+
|
485 |
+
# Example gallery at bottom
|
486 |
+
with gr.Row(variant="panel"):
|
487 |
+
if example_images:
|
488 |
+
examples_gallery = gr.Gallery(
|
489 |
+
value=example_images,
|
490 |
+
label=f"Example Images (Click to Select) - {len(example_images)} examples from {EXAMPLES_FOLDER}",
|
491 |
+
columns=6,
|
492 |
+
elem_id="image_gallery",
|
493 |
+
allow_preview=False,
|
494 |
+
elem_classes=["centered-examples"]
|
495 |
+
)
|
496 |
+
else:
|
497 |
+
gr.Markdown(
|
498 |
+
f"No example images found in {EXAMPLES_FOLDER} folder. Add image files to see examples."
|
499 |
+
)
|
500 |
+
with gr.Column(variant="panel", scale=1):
|
501 |
+
gr.Markdown("## Video Version")
|
502 |
+
gr.Markdown("#### Unfortunately, this only runs locally due to latency when uploading images to Spaces.")
|
503 |
+
gr.Markdown("#### Test it yourself: download the `examples_video` folder and `app_local.py`.")
|
504 |
+
gr.Markdown("#### Don’t forget to install the required dependencies! :D")
|
505 |
+
|
506 |
+
with gr.Row(variant="panel"):
|
507 |
+
|
508 |
+
with gr.Column(scale=1):
|
509 |
+
gr.Markdown("### Input-Videos")
|
510 |
+
gr.Video("examples_video/test_video7_resolve.mp4", interactive=True, visible=True)
|
511 |
+
gr.Video("examples_video/test_video2_resolve.mp4", interactive=True, visible=True)
|
512 |
+
with gr.Column(scale=1):
|
513 |
+
gr.Markdown("### Model-Output")
|
514 |
+
gr.Video("converted_video/test_video7_resolve_converted.mp4", interactive=True, visible=True)
|
515 |
+
gr.Video("converted_video/test_video2_resolve_converted.mp4", interactive=True, visible=True)
|
516 |
+
|
517 |
+
# Connect components
|
518 |
+
upload_btn.upload(
|
519 |
+
fn=lambda file_obj: file_obj.name if hasattr(file_obj, 'name') else str(file_obj),
|
520 |
+
inputs=[upload_btn],
|
521 |
+
outputs=[image_input]
|
522 |
+
)
|
523 |
+
|
524 |
+
image_input.change(
|
525 |
+
fn=lambda x: x,
|
526 |
+
inputs=[image_input],
|
527 |
+
outputs=[current_image]
|
528 |
+
)
|
529 |
+
|
530 |
+
if example_images:
|
531 |
+
examples_gallery.select(
|
532 |
+
fn=select_from_gallery,
|
533 |
+
outputs=[image_input]
|
534 |
+
)
|
535 |
+
|
536 |
+
# Process immediately when image is uploaded
|
537 |
+
image_input.change(
|
538 |
+
fn=process_image,
|
539 |
+
inputs=[image_input, confidence],
|
540 |
+
outputs=[image_output]
|
541 |
+
)
|
542 |
+
|
543 |
+
if __name__ == "__main__":
|
544 |
+
# Create examples folder if it doesn't exist
|
545 |
+
if not os.path.exists(EXAMPLES_FOLDER):
|
546 |
+
os.makedirs(EXAMPLES_FOLDER)
|
547 |
+
print(f"Created examples folder at {EXAMPLES_FOLDER}")
|
548 |
+
|
549 |
demo.launch(share=False)
|