Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import json
|
4 |
+
import shutil
|
5 |
+
import requests
|
6 |
+
import re as r
|
7 |
+
from urllib.request import urlopen
|
8 |
+
from datetime import datetime
|
9 |
+
import gradio as gr
|
10 |
+
import tensorflow as tf
|
11 |
+
import keras_ocr
|
12 |
+
import cv2
|
13 |
+
import csv
|
14 |
+
import pandas as pd
|
15 |
+
import huggingface_hub
|
16 |
+
from huggingface_hub import Repository, upload_file
|
17 |
+
import scipy.ndimage.interpolation as inter
|
18 |
+
import easyocr
|
19 |
+
from datasets import load_dataset, Image
|
20 |
+
from PIL import Image as PILImage
|
21 |
+
from paddleocr import PaddleOCR
|
22 |
+
import pytesseract
|
23 |
+
import torch
|
24 |
+
import spaces
|
25 |
+
|
26 |
+
# Global Variables
|
27 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
28 |
+
DATASET_NAME = "image_to_text_ocr"
|
29 |
+
DATASET_REPO_URL = "https://huggingface.co/ImranzamanML/image_to_text_ocr"
|
30 |
+
DATA_FILENAME = "ocr_data.csv"
|
31 |
+
DATA_FILE_PATH = os.path.join("ocr_data", DATA_FILENAME)
|
32 |
+
DATASET_REPO_ID = "ImranzamanML/image_to_text_ocr"
|
33 |
+
REPOSITORY_DIR = "data"
|
34 |
+
LOCAL_DIR = 'data_local'
|
35 |
+
os.makedirs(LOCAL_DIR, exist_ok=True)
|
36 |
+
|
37 |
+
"""
|
38 |
+
OCR using PaddleOCR
|
39 |
+
"""
|
40 |
+
@spaces.GPU
|
41 |
+
def paddle_ocr_processor(image):
|
42 |
+
final_text = ''
|
43 |
+
ocr = PaddleOCR(use_gpu=True, lang='en', use_angle_cls=True)
|
44 |
+
result = ocr.ocr(image)
|
45 |
+
for i in range(len(result[0])):
|
46 |
+
text = result[0][i][1][0]
|
47 |
+
final_text += ' ' + text
|
48 |
+
return final_text
|
49 |
+
|
50 |
+
"""
|
51 |
+
OCR using Keras OCR
|
52 |
+
"""
|
53 |
+
@spaces.GPU
|
54 |
+
def keras_ocr_processor(image):
|
55 |
+
output_text = ''
|
56 |
+
pipeline = keras_ocr.pipeline.Pipeline()
|
57 |
+
images = [keras_ocr.tools.read(image)]
|
58 |
+
predictions = pipeline.recognize(images)
|
59 |
+
first_prediction = predictions[0]
|
60 |
+
for text, box in first_prediction:
|
61 |
+
output_text += ' ' + text
|
62 |
+
return output_text
|
63 |
+
|
64 |
+
"""
|
65 |
+
OCR using EasyOCR
|
66 |
+
"""
|
67 |
+
def convert_to_grayscale(image):
|
68 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
69 |
+
|
70 |
+
def apply_thresholding(src):
|
71 |
+
return cv2.threshold(src, 127, 255, cv2.THRESH_TOZERO)[1]
|
72 |
+
|
73 |
+
@spaces.GPU
|
74 |
+
def easy_ocr_processor(image):
|
75 |
+
gray_image = convert_to_grayscale(image)
|
76 |
+
apply_thresholding(gray_image)
|
77 |
+
cv2.imwrite('processed_image.png', gray_image)
|
78 |
+
reader = easyocr.Reader(['th', 'en'])
|
79 |
+
detected_text = reader.readtext('processed_image.png', paragraph="False", detail=0)
|
80 |
+
detected_text = ''.join(detected_text)
|
81 |
+
return detected_text
|
82 |
+
|
83 |
+
"""
|
84 |
+
Utility Functions
|
85 |
+
"""
|
86 |
+
def save_json(data, filepath):
|
87 |
+
with open(filepath, 'w+', encoding="utf8") as f:
|
88 |
+
json.dump(data, f)
|
89 |
+
|
90 |
+
def get_ip_address():
|
91 |
+
try:
|
92 |
+
response = str(urlopen('http://checkip.dyndns.com/').read())
|
93 |
+
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(response).group(1)
|
94 |
+
except Exception as e:
|
95 |
+
print("Error while getting IP address -->", e)
|
96 |
+
return ''
|
97 |
+
|
98 |
+
def fetch_location(ip_addr):
|
99 |
+
try:
|
100 |
+
req_data = {"ip": ip_addr, "token": "pkml123"}
|
101 |
+
url = "https://demos.pragnakalp.com/get-ip-location"
|
102 |
+
headers = {'Content-Type': 'application/json'}
|
103 |
+
response = requests.post(url, headers=headers, data=json.dumps(req_data)).json()
|
104 |
+
return response
|
105 |
+
except Exception as e:
|
106 |
+
print("Error while getting location -->", e)
|
107 |
+
return {}
|
108 |
+
|
109 |
+
def log_ocr_data(method, text_output, input_image):
|
110 |
+
print("Logging OCR data...")
|
111 |
+
ip_address = get_ip_address()
|
112 |
+
location_info = fetch_location(ip_address)
|
113 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H-%M-%S')
|
114 |
+
save_dir = os.path.join(LOCAL_DIR, timestamp)
|
115 |
+
os.makedirs(save_dir, exist_ok=True)
|
116 |
+
|
117 |
+
image_filename = os.path.join(save_dir, 'image.png')
|
118 |
+
try:
|
119 |
+
PILImage.fromarray(input_image).save(image_filename)
|
120 |
+
except Exception:
|
121 |
+
raise Exception(f"Failed to save image as file")
|
122 |
+
|
123 |
+
metadata_file_path = os.path.join(save_dir, 'metadata.jsonl')
|
124 |
+
metadata = {
|
125 |
+
'id': timestamp,
|
126 |
+
'method': method,
|
127 |
+
'file_name': 'image.png',
|
128 |
+
'generated_text': text_output,
|
129 |
+
'ip': ip_address,
|
130 |
+
'location': location_info
|
131 |
+
}
|
132 |
+
save_json(metadata, metadata_file_path)
|
133 |
+
|
134 |
+
repo_image_path = os.path.join(REPOSITORY_DIR, os.path.join(timestamp, 'image.png'))
|
135 |
+
_ = upload_file(
|
136 |
+
path_or_fileobj=image_filename,
|
137 |
+
path_in_repo=repo_image_path,
|
138 |
+
repo_id=DATASET_REPO_ID,
|
139 |
+
repo_type='dataset',
|
140 |
+
token=HF_TOKEN
|
141 |
+
)
|
142 |
+
|
143 |
+
repo_json_path = os.path.join(REPOSITORY_DIR, os.path.join(timestamp, 'metadata.jsonl'))
|
144 |
+
_ = upload_file(
|
145 |
+
path_or_fileobj=metadata_file_path,
|
146 |
+
path_in_repo=repo_json_path,
|
147 |
+
repo_id=DATASET_REPO_ID,
|
148 |
+
repo_type='dataset',
|
149 |
+
token=HF_TOKEN
|
150 |
+
)
|
151 |
+
|
152 |
+
repo.git_pull()
|
153 |
+
|
154 |
+
url = 'http://pragnakalpdev35.pythonanywhere.com/HF_space_image_to_text'
|
155 |
+
payload = {
|
156 |
+
'Method': method,
|
157 |
+
'text_output': text_output,
|
158 |
+
'img': input_image.tolist(),
|
159 |
+
'ip_address': ip_address,
|
160 |
+
'loc': location_info
|
161 |
+
}
|
162 |
+
response = requests.post(url, json=payload)
|
163 |
+
print("Mail status code:", response.status_code)
|
164 |
+
|
165 |
+
return "***** Logs saved successfully! *****"
|
166 |
+
|
167 |
+
"""
|
168 |
+
OCR Generation
|
169 |
+
"""
|
170 |
+
def generate_ocr_text(method, image):
|
171 |
+
text_output = ''
|
172 |
+
if image.any():
|
173 |
+
if method == 'EasyOCR':
|
174 |
+
text_output = easy_ocr_processor(image)
|
175 |
+
elif method == 'KerasOCR':
|
176 |
+
text_output = keras_ocr_processor(image)
|
177 |
+
elif method == 'PaddleOCR':
|
178 |
+
text_output = paddle_ocr_processor(image)
|
179 |
+
|
180 |
+
try:
|
181 |
+
log_ocr_data(method, text_output, image)
|
182 |
+
except Exception as e:
|
183 |
+
print(e)
|
184 |
+
return text_output
|
185 |
+
else:
|
186 |
+
raise gr.Error("Please upload an image!")
|
187 |
+
|
188 |
+
"""
|
189 |
+
Create user interface for OCR demo
|
190 |
+
"""
|
191 |
+
image_input = gr.Image(label="Upload Image")
|
192 |
+
method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR", label="Select OCR Method")
|
193 |
+
output_textbox = gr.Textbox(label="Recognized Text")
|
194 |
+
|
195 |
+
demo = gr.Interface(
|
196 |
+
fn=generate_ocr_text,
|
197 |
+
inputs=[method_input, image_input],
|
198 |
+
outputs=output_textbox,
|
199 |
+
title="Enhanced OCR Demo",
|
200 |
+
description="Choose an OCR method and upload an image to extract text.",
|
201 |
+
theme="huggingface",
|
202 |
+
css="""
|
203 |
+
.gradio-container {background-color: #f5f5f5; font-family: Arial, sans-serif;}
|
204 |
+
#method_input {background-color: #FFC107; font-size: 18px; padding: 10px;}
|
205 |
+
#output_textbox {font-size: 16px; color: #333;}
|
206 |
+
"""
|
207 |
+
)
|
208 |
+
|
209 |
+
demo.launch()
|