Spaces:
Runtime error
Runtime error
ImranzamanML
commited on
Commit
•
f08d86f
1
Parent(s):
a53de33
Create ai_doctor
Browse files
ai_doctor
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.document_loaders.csv_loader import CSVLoader
|
2 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
3 |
+
from langchain.embeddings import CacheBackedEmbeddings
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
from langchain.storage import LocalFileStore
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
import os
|
9 |
+
|
10 |
+
def create_index():
|
11 |
+
# load the data
|
12 |
+
dir = os.path.dirname(__file__)
|
13 |
+
df_path = dir + '/data/Mental_Health_FAQ.csv'
|
14 |
+
loader = CSVLoader(file_path = df_path)
|
15 |
+
data = loader.load()
|
16 |
+
|
17 |
+
# create the embeddings model
|
18 |
+
embeddings_model = OpenAIEmbeddings()
|
19 |
+
|
20 |
+
# create the cache backed embeddings in vector store
|
21 |
+
store = LocalFileStore("./cache")
|
22 |
+
cached_embeder = CacheBackedEmbeddings.from_bytes_store(
|
23 |
+
embeddings_model, store, namespace=embeddings_model.model
|
24 |
+
)
|
25 |
+
vector_store = FAISS.from_documents(data, embeddings_model)
|
26 |
+
|
27 |
+
return vector_store.as_retriever()
|
28 |
+
|
29 |
+
def setup(openai_key):
|
30 |
+
# Set the API key for OpenAI
|
31 |
+
os.environ["OPENAI_API_KEY"] = openai_key
|
32 |
+
retriver = create_index()
|
33 |
+
llm = ChatOpenAI(model="gpt-4")
|
34 |
+
return retriver, llm
|
35 |
+
|
36 |
+
def mh_assistant(openai_key,query):
|
37 |
+
|
38 |
+
# Setup
|
39 |
+
retriever,llm = setup(openai_key)
|
40 |
+
# Create the QA chain
|
41 |
+
handler = StdOutCallbackHandler()
|
42 |
+
|
43 |
+
qa_with_sources_chain = RetrievalQA.from_chain_type(
|
44 |
+
llm=llm,
|
45 |
+
retriever=retriever,
|
46 |
+
callbacks=[handler],
|
47 |
+
return_source_documents=True
|
48 |
+
)
|
49 |
+
|
50 |
+
# Ask a question
|
51 |
+
res = qa_with_sources_chain({"query":query})
|
52 |
+
return (res['result'])
|
53 |
+
|