Spaces:
Runtime error
Runtime error
import os | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.embeddings import CacheBackedEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.storage import LocalFileStore | |
from langchain.chains import RetrievalQA | |
from langchain_openai import ChatOpenAI | |
def create_index(): | |
# Load the data from CSV file | |
data_loader = CSVLoader(file_path="train.csv") | |
data = data_loader.load() | |
# Create the embeddings model | |
embeddings_model = OpenAIEmbeddings() | |
# Create the cache backed embeddings in vector store | |
store = LocalFileStore("./cache") | |
cached_embedder = CacheBackedEmbeddings.from_bytes_store( | |
embeddings_model, store, namespace=embeddings_model.model | |
) | |
# Create FAISS vector store from documents | |
vector_store = FAISS.from_documents(data, embeddings_model) | |
return vector_store.as_retriever() | |
def setup_openai(openai_key): | |
# Set the API key for OpenAI | |
os.environ["OPENAI_API_KEY"] = openai_key | |
# Create index retriever | |
retriever = create_index() | |
# Initialize ChatOpenAI model | |
chat_openai_model = ChatOpenAI(model="gpt-4") | |
return retriever, chat_openai_model | |
def ai_doctor_chat(openai_key, query): | |
# Setup OpenAI environment | |
retriever, chat_model = setup_openai(openai_key) | |
# Create the QA chain | |
handler = StdOutCallbackHandler() | |
qa_with_sources_chain = RetrievalQA.from_chain_type( | |
llm=chat_model, | |
retriever=retriever, | |
callbacks=[handler], | |
return_source_documents=True | |
) | |
# Ask a question/query | |
res = qa_with_sources_chain({"query": query}) | |
return res['result'] | |