Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
checkpoint = "openai/clip-vit-large-patch14"
|
9 |
+
detector = pipeline(model=checkpoint, task="zero-shot-image-classification")
|
10 |
+
# Function to predict dog category
|
11 |
+
def predict_dog_category(image):
|
12 |
+
# List of dog categories
|
13 |
+
dog_category = [
|
14 |
+
'Siberian Husky', 'Boxer', # Working Dogs
|
15 |
+
'Border Collie', 'Australian Shepherd', # Herding Dogs
|
16 |
+
'Chihuahua', 'Pomeranian', # Toy Dogs
|
17 |
+
'Labrador Retriever', 'Golden Retriever', # Sporting Dogs
|
18 |
+
'Yorkshire Terrier', 'Bull Terrier', # Terriers
|
19 |
+
'Bulldog', 'Poodle' # Non-Sporting Dogs
|
20 |
+
]
|
21 |
+
|
22 |
+
# Use CLIP model to predict dog category
|
23 |
+
predictions = detector(image, candidate_labels=dog_category)
|
24 |
+
return {predictions[i]['label']: float(predictions[i]['score']) for i in range(len(predictions))}
|
25 |
+
|
26 |
+
# Create Gradio interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=predict_dog_category,
|
29 |
+
inputs=gr.Image(type="pil"),
|
30 |
+
outputs=gr.Label(num_top_classes=12)
|
31 |
+
)
|
32 |
+
iface.launch(share=True)
|