Spaces:
Sleeping
Sleeping
Update 101234444_aml_assignment_1.py
Browse files
101234444_aml_assignment_1.py
CHANGED
@@ -32,6 +32,8 @@ model = tf.keras.models.load_model("final_model.h5")
|
|
32 |
index_to_class = {v: k for k, v in class_indices.items()}
|
33 |
|
34 |
def classify_image(image: PIL.Image.Image):
|
|
|
|
|
35 |
try:
|
36 |
# Ensure the input is a PIL Image, resize it, and then convert it to a NumPy array
|
37 |
if not isinstance(image, PIL.Image.Image):
|
@@ -48,7 +50,7 @@ def classify_image(image: PIL.Image.Image):
|
|
48 |
predicted_class_idx = np.argmax(predictions) # Get the predicted class index
|
49 |
|
50 |
# Map index to label using index_to_class
|
51 |
-
predicted_class_label = index_to_class[predicted_class_idx]
|
52 |
return predicted_class_label
|
53 |
|
54 |
except Exception as e:
|
|
|
32 |
index_to_class = {v: k for k, v in class_indices.items()}
|
33 |
|
34 |
def classify_image(image: PIL.Image.Image):
|
35 |
+
if image is None:
|
36 |
+
return "Invalid or empty image provided."
|
37 |
try:
|
38 |
# Ensure the input is a PIL Image, resize it, and then convert it to a NumPy array
|
39 |
if not isinstance(image, PIL.Image.Image):
|
|
|
50 |
predicted_class_idx = np.argmax(predictions) # Get the predicted class index
|
51 |
|
52 |
# Map index to label using index_to_class
|
53 |
+
predicted_class_label = index_to_class[predicted_class_idx].replace('_', ' ')
|
54 |
return predicted_class_label
|
55 |
|
56 |
except Exception as e:
|