Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_drawable_canvas import st_canvas | |
from streamlit_image_coordinates import streamlit_image_coordinates | |
from idc_index import index | |
import os | |
import glob | |
import shutil | |
import dcm2niix | |
import subprocess | |
import random | |
import base64 | |
from model.data_process.demo_data_process import process_ct_gt | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from PIL import Image, ImageDraw | |
import monai.transforms as transforms | |
from utils import show_points, make_fig, reflect_points_into_model, initial_rectangle, reflect_json_data_to_3D_box, reflect_box_into_model, run | |
import nibabel as nib | |
import tempfile | |
print('script run') | |
#further improvement | |
#decorator singletion or use cache data class | |
# https://docs.streamlit.io/develop/api-reference/caching-and-state/st.experimental_singleton | |
# https://docs.streamlit.io/develop/concepts/architecture/caching | |
def download_idc_data_serieUID(serieUID_lst, output_folder): | |
#download IDC data cases | |
client = index.IDCClient() | |
#define serieUIDs to download | |
#download series and convert to .nii.gz | |
if os.path.exists(output_folder): | |
shutil.rmtree(output_folder) | |
os.makedirs(output_folder) | |
for idx, serieUID_ddl in enumerate(serieUID_lst): | |
sample_dcm_dir = os.path.join(output_folder, f"ddl_series{idx}_dcm") | |
sample_nii_dir = os.path.join(output_folder, f"ddl_series{idx}_nii") | |
for dir in [sample_dcm_dir, sample_nii_dir]: | |
if os.path.exists(dir): | |
shutil.rmtree(dir) | |
os.makedirs(dir) | |
client.download_from_selection(seriesInstanceUID=serieUID_ddl, downloadDir=sample_dcm_dir) | |
subprocess.call(["dcm2niix", "-o", sample_nii_dir, "-z", "y", | |
"-f", "IDC_%i", "-g", "y", sample_dcm_dir]) | |
return glob.glob(os.path.join(output_folder, "*nii/*.nii.gz")) | |
def get_random_sample_idc_from_bodypart(bodypart_selected): | |
client = index.IDCClient() | |
# body_parts = client.index[(client.index['Modality'].isin(['CT']))&(idc_client.index['instanceCount']> '100')]['BodyPartExamined'].unique() | |
matching_series_list = client.index[client.index['Modality'].isin(["CT"]) \ | |
& (client.index['BodyPartExamined'] == bodypart_selected) & \ | |
(client.index['instanceCount']> '100')]['SeriesInstanceUID'].values | |
# select random series from the list | |
random_series_uid = random.choice(matching_series_list) | |
random_series_viewer_url = client.get_viewer_URL(random_series_uid) | |
return random_series_uid, random_series_viewer_url | |
def retrieve_idc_index_body_parts(): | |
idc_client = index.IDCClient() | |
body_parts = idc_client.index[(idc_client.index['Modality'].isin(['CT']))&(idc_client.index['instanceCount']< '150')]['BodyPartExamined'].unique() | |
return body_parts | |
############################################# | |
st.session_state.option = None | |
if 'idc_data' not in st.session_state: | |
case_list = download_idc_data_serieUID(serieUID_lst=["1.3.6.1.4.1.14519.5.2.1.8421.4008.125612661111422710051062993644", | |
"1.3.6.1.4.1.14519.5.2.1.3344.4008.552105302448832783460360105045", | |
"1.3.6.1.4.1.14519.5.2.1.3344.4008.217290429362492484143666931850", | |
"1.3.6.1.4.1.14519.5.2.1.3344.4008.315023636447426194723399171147", | |
"1.3.6.1.4.1.14519.5.2.1.3344.4008.307374355712319704057189924161"], | |
output_folder="model/asset/idc_samples") | |
st.session_state.idc_data = True | |
else: | |
case_list = glob.glob("model/asset/idc_samples/*nii/*.nii.gz") | |
if 'idc_serieUID_sample' not in st.session_state: | |
st.session_state.idc_serieUID_sample = None | |
# init session_state | |
if 'option' not in st.session_state: | |
st.session_state.option = None | |
if 'text_prompt' not in st.session_state: | |
st.session_state.text_prompt = None | |
if 'reset_demo_case' not in st.session_state: | |
st.session_state.reset_demo_case = False | |
if 'preds_3D' not in st.session_state: | |
st.session_state.preds_3D = None | |
st.session_state.preds_3D_ori = None | |
if 'data_item' not in st.session_state: | |
st.session_state.data_item = None | |
if 'points' not in st.session_state: | |
st.session_state.points = [] | |
if 'use_text_prompt' not in st.session_state: | |
st.session_state.use_text_prompt = False | |
if 'use_text_serieUID' not in st.session_state: | |
st.session_state.use_text_serieUID = False | |
if 'use_point_prompt' not in st.session_state: | |
st.session_state.use_point_prompt = False | |
if 'use_box_prompt' not in st.session_state: | |
st.session_state.use_box_prompt = False | |
if 'rectangle_3Dbox' not in st.session_state: | |
st.session_state.rectangle_3Dbox = [0,0,0,0,0,0] | |
if 'irregular_box' not in st.session_state: | |
st.session_state.irregular_box = False | |
if 'running' not in st.session_state: | |
st.session_state.running = False | |
if 'transparency' not in st.session_state: | |
st.session_state.transparency = 0.25 | |
############################################# | |
############################################# | |
# reset functions | |
def clear_prompts(): | |
st.session_state.points = [] | |
st.session_state.rectangle_3Dbox = [0,0,0,0,0,0] | |
def reset_demo_case(): | |
st.session_state.data_item = None | |
st.session_state.idc_serieUID_sample = None | |
st.session_state.reset_demo_case = True | |
st.session_state.idc_bodypart_selected = False | |
clear_prompts() | |
def clear_file(): | |
st.session_state.option = None | |
st.session_state.idc_serieUID_sample = None | |
st.session_state.idc_bodypart_selected = False | |
process_ct_gt.clear() | |
reset_demo_case() | |
clear_prompts() | |
############################################# | |
st.image("idc_intro_extended.jpg") | |
st.write("Below is an example on how to select a SeriesInstanceUID from Imaging Data Commons (IDC) to further use in this demo:") | |
st.image("https://github.com/ccosmin97/huggingface_idc_demos/raw/main/idc_serieUID_selection.gif") | |
st.write("Below is an overview of the SegVol method and authors acknowledgement.") | |
st.image(Image.open('model/asset/overview back.png'), use_column_width=True) | |
github_col, arxive_col = st.columns(2) | |
with github_col: | |
st.write('SegVol GitHub repo:https://github.com/BAAI-DCAI/SegVol') | |
with arxive_col: | |
st.write('SegVol Paper:https://arxiv.org/abs/2311.13385') | |
# modify demo case here | |
demo_type = st.radio( | |
"Demo case source", | |
["Select an IDC demo case from tcga_lihc collection", | |
"Filter by DICOM SeriesInstanceUID", | |
"Random sampling based on BodyPartExamined"], | |
on_change=clear_file | |
) | |
if demo_type=="Select an IDC demo case from tcga_lihc collection": | |
uploaded_file = st.selectbox( | |
"Select a demo case", | |
case_list, | |
index=None, | |
placeholder="Select a demo case...", | |
on_change=reset_demo_case) | |
elif demo_type=="Filter by DICOM SeriesInstanceUID": | |
with st.form("Filter by DICOM SeriesInstanceUID"): | |
uploaded_serieUID = st.text_input("Enter a DICOM SeriesInstanceUID", value=None) | |
submitted = st.form_submit_button("Submit", on_click=clear_prompts) | |
if submitted: | |
st.session_state.idc_serieUID_sample = download_idc_data_serieUID([str(uploaded_serieUID).strip()], "model/asset/idc_serieUID_sample")[0] | |
# st.session_state.option = uploaded_file | |
uploaded_file = st.session_state.idc_serieUID_sample | |
else: | |
uploaded_file = st.session_state.idc_serieUID_sample | |
else:#elif demo_type == "Random sampling based on BodyPartExamined": | |
with st.form("Filter by DICOM BodyPartExamined Tag") as form_body_part: | |
# body_part_list = retrieve_idc_index_body_parts() | |
body_part_selected = st.selectbox( | |
"Select a bodypart to randomly sample a CT scan from", | |
["ABDOMEN", "LUNG", "LIVER", | |
"PELVIS"], | |
index=None, | |
placeholder="Select a bodypart to pick a SeriesInstanceUID from...") | |
submitted = st.form_submit_button("Submit", on_click=reset_demo_case) | |
#if st.session_state.reset_demo_case == True and body_part_selected is not None:# and st.session_state.idc_bodypart_selected == False and | |
if submitted: | |
serieUID, ohif_link = get_random_sample_idc_from_bodypart(body_part_selected) | |
for i in range(0,5): | |
if os.path.exists("model/asset/idc_serieUID_random_sample"): | |
shutil.rmtree("model/asset/idc_serieUID_random_sample") | |
st.session_state.idc_serieUID_sample = download_idc_data_serieUID([str(serieUID)], "model/asset/idc_serieUID_random_sample")[0] | |
path_file = glob.glob(f"model/asset/idc_serieUID_random_sample/ddl_series0_nii/*.nii.gz") | |
if path_file and len(path_file) == 1: | |
break | |
else: | |
print("serieUID NOT FILLING BASIC REQs --> MORE THAN 1 NII FILE OR NO NII FILE") | |
# st.write(f"SeriesInstanceUID randomly sampled from chosen BodyPartExamined : {random_series_uid}") | |
# st.write(f"OHIF URL of selected sample : {random_series_viewer_url}") | |
# st.session_state.idc_bodypart_selected = True | |
uploaded_file = st.session_state.idc_serieUID_sample | |
else: | |
uploaded_file = st.session_state.idc_serieUID_sample | |
st.session_state.option = uploaded_file | |
if st.session_state.option is not None and \ | |
st.session_state.reset_demo_case or (st.session_state.data_item is None and st.session_state.option is not None): | |
st.session_state.data_item = process_ct_gt(st.session_state.option) | |
st.session_state.reset_demo_case = False | |
st.session_state.preds_3D = None | |
st.session_state.preds_3D_ori = None | |
prompt_col1, prompt_col2 = st.columns(2) | |
with prompt_col1: | |
st.session_state.use_text_prompt = st.toggle('Semantic prompt') | |
text_prompt_type = st.radio( | |
"Semantic prompt type", | |
["Predefined", "Custom"], | |
disabled=(not st.session_state.use_text_prompt) | |
) | |
if text_prompt_type == "Predefined": | |
pre_text = st.selectbox( | |
"Predefined anatomical category:", | |
['liver', 'right kidney', 'spleen', 'pancreas', 'aorta', 'inferior vena cava', 'right adrenal gland', 'left adrenal gland', 'gallbladder', 'esophagus', 'stomach', 'duodenum', 'left kidney'], | |
index=None, | |
disabled=(not st.session_state.use_text_prompt) | |
) | |
else: | |
pre_text = st.text_input('Enter an Anatomical word or phrase:', None, max_chars=20, | |
disabled=(not st.session_state.use_text_prompt)) | |
if pre_text is None or len(pre_text) > 0: | |
st.session_state.text_prompt = pre_text | |
else: | |
st.session_state.text_prompt = None | |
with prompt_col2: | |
spatial_prompt_on = st.toggle('Spatial prompt', on_change=clear_prompts) | |
spatial_prompt = st.radio( | |
"Spatial prompt type", | |
["Point prompt", "Box prompt"], | |
on_change=clear_prompts, | |
disabled=(not spatial_prompt_on)) | |
st.session_state.enforce_zoom = st.checkbox('Enforce zoom-out-zoom-in') | |
if spatial_prompt == "Point prompt": | |
st.session_state.use_point_prompt = True | |
st.session_state.use_box_prompt = False | |
elif spatial_prompt == "Box prompt": | |
st.session_state.use_box_prompt = True | |
st.session_state.use_point_prompt = False | |
else: | |
st.session_state.use_point_prompt = False | |
st.session_state.use_box_prompt = False | |
if not spatial_prompt_on: | |
st.session_state.use_point_prompt = False | |
st.session_state.use_box_prompt = False | |
if not st.session_state.use_text_prompt: | |
st.session_state.text_prompt = None | |
if st.session_state.option is None: | |
st.write('please select demo case first') | |
else: | |
image_3D = st.session_state.data_item['z_image'][0].numpy() | |
col_control1, col_control2 = st.columns(2) | |
with col_control1: | |
selected_index_z = st.slider('X-Y view', 0, image_3D.shape[0] - 1, 162, key='xy', disabled=st.session_state.running) | |
with col_control2: | |
selected_index_y = st.slider('X-Z view', 0, image_3D.shape[1] - 1, 162, key='xz', disabled=st.session_state.running) | |
if st.session_state.use_box_prompt: | |
top, bottom = st.select_slider( | |
'Top and bottom of box', | |
options=range(0, 325), | |
value=(0, 324), | |
disabled=st.session_state.running | |
) | |
st.session_state.rectangle_3Dbox[0] = top | |
st.session_state.rectangle_3Dbox[3] = bottom | |
col_image1, col_image2 = st.columns(2) | |
if st.session_state.preds_3D is not None: | |
st.session_state.transparency = st.slider('Mask opacity', 0.0, 1.0, 0.25, disabled=st.session_state.running) | |
with col_image1: | |
image_z_array = image_3D[selected_index_z] | |
preds_z_array = None | |
if st.session_state.preds_3D is not None: | |
preds_z_array = st.session_state.preds_3D[selected_index_z] | |
image_z = make_fig(image_z_array, preds_z_array, st.session_state.points, selected_index_z, 'xy') | |
if st.session_state.use_point_prompt: | |
value_xy = streamlit_image_coordinates(image_z, width=325) | |
if value_xy is not None: | |
point_ax_xy = (selected_index_z, value_xy['y'], value_xy['x']) | |
if len(st.session_state.points) >= 3: | |
st.warning('Max point num is 3', icon="??") | |
elif point_ax_xy not in st.session_state.points: | |
st.session_state.points.append(point_ax_xy) | |
print('point_ax_xy add rerun') | |
st.rerun() | |
elif st.session_state.use_box_prompt: | |
canvas_result_xy = st_canvas( | |
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity | |
stroke_width=3, | |
stroke_color='#2909F1', | |
background_image=image_z, | |
update_streamlit=True, | |
height=325, | |
width=325, | |
drawing_mode='transform', | |
point_display_radius=0, | |
key="canvas_xy", | |
initial_drawing=initial_rectangle, | |
display_toolbar=True | |
) | |
try: | |
print(canvas_result_xy.json_data['objects'][0]['angle']) | |
if canvas_result_xy.json_data['objects'][0]['angle'] != 0: | |
st.warning('Rotating is undefined behavior', icon="??") | |
st.session_state.irregular_box = True | |
else: | |
st.session_state.irregular_box = False | |
reflect_json_data_to_3D_box(canvas_result_xy.json_data, view='xy') | |
except: | |
print('exception') | |
pass | |
else: | |
st.image(image_z, use_column_width=False) | |
with col_image2: | |
image_y_array = image_3D[:, selected_index_y, :] | |
preds_y_array = None | |
if st.session_state.preds_3D is not None: | |
preds_y_array = st.session_state.preds_3D[:, selected_index_y, :] | |
image_y = make_fig(image_y_array, preds_y_array, st.session_state.points, selected_index_y, 'xz') | |
if st.session_state.use_point_prompt: | |
value_yz = streamlit_image_coordinates(image_y, width=325) | |
if value_yz is not None: | |
point_ax_xz = (value_yz['y'], selected_index_y, value_yz['x']) | |
if len(st.session_state.points) >= 3: | |
st.warning('Max point num is 3', icon="??") | |
elif point_ax_xz not in st.session_state.points: | |
st.session_state.points.append(point_ax_xz) | |
print('point_ax_xz add rerun') | |
st.rerun() | |
elif st.session_state.use_box_prompt: | |
if st.session_state.rectangle_3Dbox[1] <= selected_index_y and selected_index_y <= st.session_state.rectangle_3Dbox[4]: | |
draw = ImageDraw.Draw(image_y) | |
#rectangle xz view (upper-left and lower-right) | |
rectangle_coords = [(st.session_state.rectangle_3Dbox[2], st.session_state.rectangle_3Dbox[0]), | |
(st.session_state.rectangle_3Dbox[5], st.session_state.rectangle_3Dbox[3])] | |
# Draw the rectangle on the image | |
draw.rectangle(rectangle_coords, outline='#2909F1', width=3) | |
st.image(image_y, use_column_width=False) | |
else: | |
st.image(image_y, use_column_width=False) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
if st.button("Clear", use_container_width=True, | |
disabled=(st.session_state.option is None or (len(st.session_state.points)==0 and not st.session_state.use_box_prompt and st.session_state.preds_3D is None))): | |
clear_prompts() | |
st.session_state.preds_3D = None | |
st.session_state.preds_3D_ori = None | |
st.rerun() | |
with col2: | |
img_nii = None | |
if st.session_state.preds_3D_ori is not None and st.session_state.data_item is not None: | |
meta_dict = st.session_state.data_item['meta'] | |
foreground_start_coord = st.session_state.data_item['foreground_start_coord'] | |
foreground_end_coord = st.session_state.data_item['foreground_end_coord'] | |
original_shape = st.session_state.data_item['ori_shape'] | |
pred_array = st.session_state.preds_3D_ori | |
original_array = np.zeros(original_shape) | |
original_array[foreground_start_coord[0]:foreground_end_coord[0], | |
foreground_start_coord[1]:foreground_end_coord[1], | |
foreground_start_coord[2]:foreground_end_coord[2]] = pred_array | |
original_array = original_array.transpose(2, 1, 0) | |
img_nii = nib.Nifti1Image(original_array, affine=meta_dict['affine']) | |
with tempfile.NamedTemporaryFile(suffix=".nii.gz") as tmpfile: | |
nib.save(img_nii, tmpfile.name) | |
with open(tmpfile.name, "rb") as f: | |
bytes_data = f.read() | |
st.download_button( | |
label="Download result(.nii.gz)", | |
data=bytes_data, | |
file_name="segvol_preds.nii.gz", | |
mime="application/octet-stream", | |
disabled=img_nii is None | |
) | |
with col3: | |
run_button_name = 'Run'if not st.session_state.running else 'Running' | |
if st.button(run_button_name, type="primary", use_container_width=True, | |
disabled=( | |
st.session_state.data_item is None or | |
(st.session_state.text_prompt is None and len(st.session_state.points) == 0 and st.session_state.use_box_prompt is False) or | |
st.session_state.irregular_box or | |
st.session_state.running | |
)): | |
st.session_state.running = True | |
st.rerun() | |
if st.session_state.running: | |
st.session_state.running = False | |
with st.status("Running...", expanded=False) as status: | |
run() | |
st.rerun() |