Vamsi Thiriveedhi
commited on
Commit
•
c6d0240
1
Parent(s):
6c72b9f
Add large files tracked with Git LFS
Browse files- .gitattributes +1 -0
- filter_data_app.py +121 -63
- qual-checks-and-quant-values.parquet +3 -0
- requirements.txt +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
qual-checks-and-quant-values.parquet filter=lfs diff=lfs merge=lfs -text
|
filter_data_app.py
CHANGED
@@ -1,42 +1,49 @@
|
|
1 |
import streamlit as st
|
2 |
import duckdb
|
3 |
-
import os
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from upsetplot import UpSet
|
7 |
import matplotlib.pyplot as plt
|
|
|
8 |
|
9 |
# Set page configuration
|
10 |
st.set_page_config(layout="wide")
|
11 |
|
12 |
# URL and local path to the Parquet file
|
13 |
PARQUET_URL = 'https://github.com/vkt1414/idc-index-data/releases/download/0.1/qualitative_checks.parquet'
|
14 |
-
LOCAL_PARQUET_FILE = '
|
15 |
-
|
16 |
-
# Function to download the Parquet file if it doesn't exist
|
17 |
-
def download_parquet(url, local_path):
|
18 |
-
if not os.path.exists(local_path):
|
19 |
-
response = requests.get(url)
|
20 |
-
with open(local_path, 'wb') as file:
|
21 |
-
file.write(response.content)
|
22 |
-
st.write(f"Downloaded {local_path}")
|
23 |
|
24 |
@st.cache_data
|
25 |
def load_data():
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Function to filter data based on user input
|
29 |
def filter_data(df, filters):
|
30 |
for col, value in filters.items():
|
31 |
if value:
|
32 |
-
df = df
|
33 |
return df
|
34 |
|
35 |
# Function to create an UpSet plot for failed checks
|
36 |
def create_upset_plot_failures(df):
|
37 |
-
df = df.
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
df = df[df.index.to_frame().any(axis=1)] # Ignore the case when all conditions are false
|
41 |
|
42 |
fig = plt.figure()
|
@@ -46,6 +53,7 @@ def create_upset_plot_failures(df):
|
|
46 |
|
47 |
# Function to create an UpSet plot for passed checks
|
48 |
def create_upset_plot_passes(df):
|
|
|
49 |
df = df.set_index(df['segmentation_completeness'] == 'pass').set_index(df['laterality_check'] == 'pass', append=True)
|
50 |
df = df.set_index(df['series_with_vertabra_on_every_slice'] == 'pass', append=True)
|
51 |
df = df.set_index(df['connected_volumes'] == 'pass', append=True)
|
@@ -63,50 +71,99 @@ def main():
|
|
63 |
|
64 |
# Sidebar widgets for navigation and filtering
|
65 |
page = st.sidebar.selectbox("Choose a page", ["Summary", "UpSet Plots"])
|
66 |
-
|
67 |
-
# Download the Parquet file if it doesn't exist
|
68 |
-
download_parquet(PARQUET_URL, LOCAL_PARQUET_FILE)
|
69 |
|
70 |
# Load the data
|
71 |
df = load_data()
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
'laterality': laterality if laterality else None
|
107 |
-
}
|
108 |
|
109 |
-
|
110 |
|
111 |
# Define the pages
|
112 |
if page == "Summary":
|
@@ -116,30 +173,34 @@ def main():
|
|
116 |
WITH Checks AS (
|
117 |
SELECT
|
118 |
bodyPart,
|
|
|
119 |
COUNT(*) AS total_count,
|
120 |
SUM(CASE WHEN segmentation_completeness = 'pass' THEN 1 ELSE 0 END) AS pass_count,
|
121 |
SUM(CASE WHEN laterality_check = 'pass' THEN 1 ELSE 0 END) AS laterality_pass_count,
|
122 |
SUM(CASE WHEN series_with_vertabra_on_every_slice = 'pass' THEN 1 ELSE 0 END) AS vertabra_pass_count,
|
123 |
SUM(CASE WHEN connected_volumes = 'pass' THEN 1 ELSE 0 END) AS volumes_pass_count
|
124 |
FROM
|
125 |
-
'
|
126 |
GROUP BY
|
127 |
-
bodyPart
|
128 |
)
|
129 |
|
130 |
SELECT
|
131 |
bodyPart,
|
|
|
132 |
ROUND((pass_count * 100.0) / total_count, 2) || '% (' || pass_count || '/' || total_count || ')' AS segmentation_completeness,
|
133 |
-
|
|
|
|
|
134 |
ROUND((vertabra_pass_count * 100.0) / total_count, 2) || '% (' || vertabra_pass_count || '/' || total_count || ')' AS vertabra_check,
|
135 |
ROUND((volumes_pass_count * 100.0) / total_count, 2) || '% (' || volumes_pass_count || '/' || total_count || ')' AS volumes_check
|
136 |
FROM
|
137 |
Checks
|
138 |
ORDER BY
|
139 |
-
bodyPart;
|
140 |
-
""").
|
141 |
-
|
142 |
-
st.
|
143 |
|
144 |
elif page == "UpSet Plots":
|
145 |
st.header("UpSet Plots of Qualitative Checks")
|
@@ -161,7 +222,7 @@ def main():
|
|
161 |
|
162 |
start_idx = (page_number - 1) * page_size
|
163 |
end_idx = min(start_idx + page_size, len(filtered_df)) # Ensure end_idx does not go beyond the dataframe length
|
164 |
-
paginated_df = filtered_df
|
165 |
|
166 |
# Display the paginated dataframe
|
167 |
st.header("Filtered Data")
|
@@ -169,9 +230,6 @@ def main():
|
|
169 |
|
170 |
st.data_editor(
|
171 |
paginated_df,
|
172 |
-
column_config={
|
173 |
-
"viewerUrl": st.column_config.LinkColumn("Viewer Url")
|
174 |
-
},
|
175 |
hide_index=True,
|
176 |
)
|
177 |
|
@@ -184,13 +242,13 @@ def main():
|
|
184 |
# Create and display the UpSet plot for failed checks
|
185 |
st.header("UpSet Plot for Failed Checks")
|
186 |
st.write("This plot shows the combinations of checks that failed.")
|
187 |
-
if not filtered_df.
|
188 |
create_upset_plot_failures(filtered_df)
|
189 |
|
190 |
# Create and display the UpSet plot for passed checks
|
191 |
st.header("UpSet Plot for Passed Checks")
|
192 |
st.write("This plot shows the combinations of checks that passed.")
|
193 |
-
if not filtered_df.
|
194 |
create_upset_plot_passes(filtered_df)
|
195 |
|
196 |
if __name__ == "__main__":
|
|
|
1 |
import streamlit as st
|
2 |
import duckdb
|
|
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
from upsetplot import UpSet
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
import polars as pl
|
8 |
|
9 |
# Set page configuration
|
10 |
st.set_page_config(layout="wide")
|
11 |
|
12 |
# URL and local path to the Parquet file
|
13 |
PARQUET_URL = 'https://github.com/vkt1414/idc-index-data/releases/download/0.1/qualitative_checks.parquet'
|
14 |
+
LOCAL_PARQUET_FILE = 'qual-checks-and-quant-values.parquet'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@st.cache_data
|
17 |
def load_data():
|
18 |
+
cols = [
|
19 |
+
'PatientID',
|
20 |
+
'StudyInstanceUID',
|
21 |
+
'seriesNumber',
|
22 |
+
'bodyPart',
|
23 |
+
'laterality',
|
24 |
+
'segmentation_completeness',
|
25 |
+
'laterality_check',
|
26 |
+
'series_with_vertabra_on_every_slice',
|
27 |
+
'connected_volumes',
|
28 |
+
'Volume from Voxel Summation'
|
29 |
+
]
|
30 |
+
return pl.read_parquet(LOCAL_PARQUET_FILE, columns=cols)
|
31 |
|
32 |
# Function to filter data based on user input
|
33 |
def filter_data(df, filters):
|
34 |
for col, value in filters.items():
|
35 |
if value:
|
36 |
+
df = df.filter(pl.col(col) == value)
|
37 |
return df
|
38 |
|
39 |
# Function to create an UpSet plot for failed checks
|
40 |
def create_upset_plot_failures(df):
|
41 |
+
df = df.to_pandas() # Convert to Pandas DataFrame
|
42 |
+
|
43 |
+
# Treat 'pass' and null values as passing
|
44 |
+
df = df.set_index(~((df['segmentation_completeness'] == 'pass') | df['segmentation_completeness'].isnull())).set_index(~((df['laterality_check'] == 'pass') | df['laterality_check'].isnull()), append=True)
|
45 |
+
df = df.set_index(~((df['series_with_vertabra_on_every_slice'] == 'pass') | df['series_with_vertabra_on_every_slice'].isnull()), append=True)
|
46 |
+
df = df.set_index(~((df['connected_volumes'] == 'pass') | df['connected_volumes'].isnull()), append=True)
|
47 |
df = df[df.index.to_frame().any(axis=1)] # Ignore the case when all conditions are false
|
48 |
|
49 |
fig = plt.figure()
|
|
|
53 |
|
54 |
# Function to create an UpSet plot for passed checks
|
55 |
def create_upset_plot_passes(df):
|
56 |
+
df = df.to_pandas() # Convert to Pandas DataFrame
|
57 |
df = df.set_index(df['segmentation_completeness'] == 'pass').set_index(df['laterality_check'] == 'pass', append=True)
|
58 |
df = df.set_index(df['series_with_vertabra_on_every_slice'] == 'pass', append=True)
|
59 |
df = df.set_index(df['connected_volumes'] == 'pass', append=True)
|
|
|
71 |
|
72 |
# Sidebar widgets for navigation and filtering
|
73 |
page = st.sidebar.selectbox("Choose a page", ["Summary", "UpSet Plots"])
|
|
|
|
|
|
|
74 |
|
75 |
# Load the data
|
76 |
df = load_data()
|
77 |
|
78 |
+
if page == "UpSet Plots":
|
79 |
+
with st.sidebar:
|
80 |
+
st.title("Filters")
|
81 |
+
|
82 |
+
# Initialize filters with None values in session state
|
83 |
+
if 'filters' not in st.session_state:
|
84 |
+
st.session_state.filters = {
|
85 |
+
'bodyPart': None,
|
86 |
+
'segmentation_completeness': None,
|
87 |
+
'laterality_check': None,
|
88 |
+
'series_with_vertabra_on_every_slice': None,
|
89 |
+
'connected_volumes': None,
|
90 |
+
'laterality': None
|
91 |
+
}
|
92 |
+
|
93 |
+
filters = st.session_state.filters
|
94 |
+
|
95 |
+
# Define functions to handle filter updates
|
96 |
+
def reset_filters():
|
97 |
+
filters.update({
|
98 |
+
'segmentation_completeness': None,
|
99 |
+
'laterality_check': None,
|
100 |
+
'series_with_vertabra_on_every_slice': None,
|
101 |
+
'connected_volumes': None,
|
102 |
+
'laterality': None
|
103 |
+
})
|
104 |
+
st.session_state.filters = filters
|
105 |
+
|
106 |
+
def apply_filter(filter_name, value):
|
107 |
+
filters[filter_name] = value
|
108 |
+
st.session_state.filters = filters
|
109 |
+
|
110 |
+
# Body part filter
|
111 |
+
body_part_options = sorted(df['bodyPart'].unique().to_list())
|
112 |
+
body_part = st.selectbox("Body Part", options=body_part_options, key='bodyPart', on_change=reset_filters)
|
113 |
+
filters['bodyPart'] = body_part
|
114 |
+
|
115 |
+
# Apply the current filters to update options for other filters
|
116 |
+
filtered_df = filter_data(df, filters)
|
117 |
+
|
118 |
+
# Update options for other filters based on the current selection
|
119 |
+
segmentation_completeness_options = [""] + filtered_df['segmentation_completeness'].unique().to_list()
|
120 |
+
laterality_check_options = [""] + filtered_df['laterality_check'].unique().to_list()
|
121 |
+
series_with_vertabra_on_every_slice_options = [""] + filtered_df['series_with_vertabra_on_every_slice'].unique().to_list()
|
122 |
+
connected_volumes_options = [""] + filtered_df['connected_volumes'].unique().to_list()
|
123 |
+
laterality_options = [""] + filtered_df['laterality'].unique().to_list()
|
124 |
+
|
125 |
+
# Add remaining filters with default values from session state
|
126 |
+
segmentation_completeness = st.selectbox(
|
127 |
+
"Segmentation Completeness",
|
128 |
+
options=segmentation_completeness_options,
|
129 |
+
index=segmentation_completeness_options.index(filters['segmentation_completeness']) if filters['segmentation_completeness'] else 0,
|
130 |
+
key='segmentation_completeness',
|
131 |
+
on_change=lambda: apply_filter('segmentation_completeness', st.session_state.segmentation_completeness)
|
132 |
+
)
|
133 |
|
134 |
+
laterality_check = st.selectbox(
|
135 |
+
"Laterality Check",
|
136 |
+
options=laterality_check_options,
|
137 |
+
index=laterality_check_options.index(filters['laterality_check']) if filters['laterality_check'] else 0,
|
138 |
+
key='laterality_check',
|
139 |
+
on_change=lambda: apply_filter('laterality_check', st.session_state.laterality_check)
|
140 |
+
)
|
141 |
|
142 |
+
series_with_vertabra_on_every_slice = st.selectbox(
|
143 |
+
"Series with Vertebra on Every Slice",
|
144 |
+
options=series_with_vertabra_on_every_slice_options,
|
145 |
+
index=series_with_vertabra_on_every_slice_options.index(filters['series_with_vertabra_on_every_slice']) if filters['series_with_vertabra_on_every_slice'] else 0,
|
146 |
+
key='series_with_vertabra_on_every_slice',
|
147 |
+
on_change=lambda: apply_filter('series_with_vertabra_on_every_slice', st.session_state.series_with_vertabra_on_every_slice)
|
148 |
+
)
|
149 |
|
150 |
+
connected_volumes = st.selectbox(
|
151 |
+
"Connected Volumes",
|
152 |
+
options=connected_volumes_options,
|
153 |
+
index=connected_volumes_options.index(filters['connected_volumes']) if filters['connected_volumes'] else 0,
|
154 |
+
key='connected_volumes',
|
155 |
+
on_change=lambda: apply_filter('connected_volumes', st.session_state.connected_volumes)
|
156 |
+
)
|
157 |
|
158 |
+
laterality = st.selectbox(
|
159 |
+
"Laterality",
|
160 |
+
options=laterality_options,
|
161 |
+
index=laterality_options.index(filters['laterality']) if filters['laterality'] else 0,
|
162 |
+
key='laterality',
|
163 |
+
on_change=lambda: apply_filter('laterality', st.session_state.laterality)
|
164 |
+
)
|
|
|
|
|
165 |
|
166 |
+
st.session_state.filters = filters
|
167 |
|
168 |
# Define the pages
|
169 |
if page == "Summary":
|
|
|
173 |
WITH Checks AS (
|
174 |
SELECT
|
175 |
bodyPart,
|
176 |
+
laterality,
|
177 |
COUNT(*) AS total_count,
|
178 |
SUM(CASE WHEN segmentation_completeness = 'pass' THEN 1 ELSE 0 END) AS pass_count,
|
179 |
SUM(CASE WHEN laterality_check = 'pass' THEN 1 ELSE 0 END) AS laterality_pass_count,
|
180 |
SUM(CASE WHEN series_with_vertabra_on_every_slice = 'pass' THEN 1 ELSE 0 END) AS vertabra_pass_count,
|
181 |
SUM(CASE WHEN connected_volumes = 'pass' THEN 1 ELSE 0 END) AS volumes_pass_count
|
182 |
FROM
|
183 |
+
'qual-checks-and-quant-values.parquet'
|
184 |
GROUP BY
|
185 |
+
bodyPart, laterality
|
186 |
)
|
187 |
|
188 |
SELECT
|
189 |
bodyPart,
|
190 |
+
laterality,
|
191 |
ROUND((pass_count * 100.0) / total_count, 2) || '% (' || pass_count || '/' || total_count || ')' AS segmentation_completeness,
|
192 |
+
CASE WHEN laterality IS NOT NULL
|
193 |
+
THEN ROUND((laterality_pass_count * 100.0) / NULLIF(total_count, 0), 2) || '% (' || laterality_pass_count || '/' || total_count || ')'
|
194 |
+
ELSE 'N/A' END AS laterality_check,
|
195 |
ROUND((vertabra_pass_count * 100.0) / total_count, 2) || '% (' || vertabra_pass_count || '/' || total_count || ')' AS vertabra_check,
|
196 |
ROUND((volumes_pass_count * 100.0) / total_count, 2) || '% (' || volumes_pass_count || '/' || total_count || ')' AS volumes_check
|
197 |
FROM
|
198 |
Checks
|
199 |
ORDER BY
|
200 |
+
bodyPart, laterality;
|
201 |
+
""").pl()
|
202 |
+
summary_df = summary_df.to_pandas()
|
203 |
+
st.data_editor(summary_df, hide_index=True,use_container_width=True,height=1500)
|
204 |
|
205 |
elif page == "UpSet Plots":
|
206 |
st.header("UpSet Plots of Qualitative Checks")
|
|
|
222 |
|
223 |
start_idx = (page_number - 1) * page_size
|
224 |
end_idx = min(start_idx + page_size, len(filtered_df)) # Ensure end_idx does not go beyond the dataframe length
|
225 |
+
paginated_df = filtered_df[start_idx:end_idx].to_pandas() # Convert to Pandas DataFrame
|
226 |
|
227 |
# Display the paginated dataframe
|
228 |
st.header("Filtered Data")
|
|
|
230 |
|
231 |
st.data_editor(
|
232 |
paginated_df,
|
|
|
|
|
|
|
233 |
hide_index=True,
|
234 |
)
|
235 |
|
|
|
242 |
# Create and display the UpSet plot for failed checks
|
243 |
st.header("UpSet Plot for Failed Checks")
|
244 |
st.write("This plot shows the combinations of checks that failed.")
|
245 |
+
if not filtered_df.is_empty():
|
246 |
create_upset_plot_failures(filtered_df)
|
247 |
|
248 |
# Create and display the UpSet plot for passed checks
|
249 |
st.header("UpSet Plot for Passed Checks")
|
250 |
st.write("This plot shows the combinations of checks that passed.")
|
251 |
+
if not filtered_df.is_empty():
|
252 |
create_upset_plot_passes(filtered_df)
|
253 |
|
254 |
if __name__ == "__main__":
|
qual-checks-and-quant-values.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:527bf1b978eec82de57e9b4f22d1470da418c47a45ee79c47a3af6857ee850e1
|
3 |
+
size 1127681711
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
duckdb
|
2 |
matplotlib
|
3 |
pandas
|
|
|
4 |
pyarrow
|
5 |
streamlit
|
6 |
streamlit_extras
|
|
|
1 |
duckdb
|
2 |
matplotlib
|
3 |
pandas
|
4 |
+
polars
|
5 |
pyarrow
|
6 |
streamlit
|
7 |
streamlit_extras
|