Imadsarvm commited on
Commit
c03e3f1
1 Parent(s): 052cc8a

Upload 2 files

Browse files
Files changed (2) hide show
  1. bg_removersarvm.py +162 -0
  2. isnet.pth +3 -0
bg_removersarvm.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """bg_removersarvm.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/17ZfqfkhZV5xSwXdHblThSQM_Yna-0J22
8
+ """
9
+
10
+ import cv2
11
+ import gradio as gr
12
+ import os
13
+ from PIL import Image
14
+ import numpy as np
15
+ import torch
16
+ from torch.autograd import Variable
17
+ from torchvision import transforms
18
+ import torch.nn.functional as F
19
+ import gdown
20
+ import matplotlib.pyplot as plt
21
+ import warnings
22
+ warnings.filterwarnings("ignore")
23
+
24
+ os.system("git clone https://github.com/xuebinqin/DIS")
25
+ os.system("mv DIS/IS-Net/* .")
26
+
27
+ # project imports
28
+ from data_loader_cache import normalize, im_reader, im_preprocess
29
+ from models import *
30
+
31
+ #Helpers
32
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
33
+
34
+ # Download official weights
35
+ if not os.path.exists("saved_models"):
36
+ os.mkdir("saved_models")
37
+ os.system("mv isnet.pth saved_models/")
38
+
39
+ class GOSNormalize(object):
40
+ '''
41
+ Normalize the Image using torch.transforms
42
+ '''
43
+ def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
44
+ self.mean = mean
45
+ self.std = std
46
+
47
+ def __call__(self,image):
48
+ image = normalize(image,self.mean,self.std)
49
+ return image
50
+
51
+
52
+ transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
53
+
54
+ def load_image(im_path, hypar):
55
+ im = im_reader(im_path)
56
+ im, im_shp = im_preprocess(im, hypar["cache_size"])
57
+ im = torch.divide(im,255.0)
58
+ shape = torch.from_numpy(np.array(im_shp))
59
+ return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
60
+
61
+
62
+ def build_model(hypar,device):
63
+ net = hypar["model"]#GOSNETINC(3,1)
64
+
65
+ # convert to half precision
66
+ if(hypar["model_digit"]=="half"):
67
+ net.half()
68
+ for layer in net.modules():
69
+ if isinstance(layer, nn.BatchNorm2d):
70
+ layer.float()
71
+
72
+ net.to(device)
73
+
74
+ if(hypar["restore_model"]!=""):
75
+ net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
76
+ net.to(device)
77
+ net.eval()
78
+ return net
79
+
80
+
81
+ def predict(net, inputs_val, shapes_val, hypar, device):
82
+ '''
83
+ Given an Image, predict the mask
84
+ '''
85
+ net.eval()
86
+
87
+ if(hypar["model_digit"]=="full"):
88
+ inputs_val = inputs_val.type(torch.FloatTensor)
89
+ else:
90
+ inputs_val = inputs_val.type(torch.HalfTensor)
91
+
92
+
93
+ inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
94
+
95
+ ds_val = net(inputs_val_v)[0] # list of 6 results
96
+
97
+ pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
98
+
99
+ ## recover the prediction spatial size to the orignal image size
100
+ pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
101
+
102
+ ma = torch.max(pred_val)
103
+ mi = torch.min(pred_val)
104
+ pred_val = (pred_val-mi)/(ma-mi) # max = 1
105
+
106
+ if device == 'cuda': torch.cuda.empty_cache()
107
+ return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
108
+
109
+ # Set Parameters
110
+ hypar = {} # paramters for inferencing
111
+
112
+
113
+ hypar["model_path"] ="./saved_models" ## load trained weights from this path
114
+ hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
115
+ hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
116
+
117
+ ## choose floating point accuracy --
118
+ hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
119
+ hypar["seed"] = 0
120
+
121
+ hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
122
+
123
+ ## data augmentation parameters ---
124
+ hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
125
+ hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
126
+
127
+ hypar["model"] = ISNetDIS()
128
+
129
+ # Build Model
130
+ net = build_model(hypar, device)
131
+
132
+
133
+ def inference(image):
134
+ image_path = image
135
+
136
+ image_tensor, orig_size = load_image(image_path, hypar)
137
+ mask = predict(net, image_tensor, orig_size, hypar, device)
138
+
139
+ pil_mask = Image.fromarray(mask).convert('L')
140
+ im_rgb = Image.open(image).convert("RGB")
141
+
142
+ im_rgba = im_rgb.copy()
143
+ im_rgba.putalpha(pil_mask)
144
+
145
+ return [im_rgba, pil_mask]
146
+
147
+
148
+ title = "Bg remover"
149
+ description = "Bg remover for sarvm catalog"
150
+ article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' alt='visitor badge'></center></div>"
151
+
152
+ interface = gr.Interface(
153
+ fn=inference,
154
+ inputs=gr.Image(type='filepath'),
155
+ outputs=["image", "image"],
156
+ examples=[['robot.png'], ['ship.png']],
157
+ title=title,
158
+ description=description,
159
+ article=article,
160
+ allow_flagging='never',
161
+ cache_examples=False,
162
+ ).queue().launch(show_error=True)
isnet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e1aafea58f0b55d0c35077e0ceade6ba1ba2bce372fd4f8f77215391f3fac13
3
+ size 176579397