Spaces:
Runtime error
Runtime error
| import os | |
| import time | |
| import traceback | |
| from typing import Optional | |
| from config_store import ( | |
| get_process_config, | |
| get_inference_config, | |
| get_openvino_config, | |
| get_pytorch_config, | |
| ) | |
| import gradio as gr | |
| from huggingface_hub import whoami, create_repo | |
| from huggingface_hub.errors import GatedRepoError | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from optimum_benchmark.launchers.device_isolation_utils import * # noqa | |
| from optimum_benchmark.backends.openvino.utils import ( | |
| TASKS_TO_OVMODELS, | |
| TASKS_TO_OVPIPELINES, | |
| ) | |
| from optimum_benchmark.backends.transformers_utils import ( | |
| TASKS_TO_AUTO_MODEL_CLASS_NAMES, | |
| ) | |
| from optimum_benchmark.backends.diffusers_utils import ( | |
| TASKS_TO_AUTO_PIPELINE_CLASS_NAMES, | |
| ) | |
| from optimum_benchmark import ( | |
| Benchmark, | |
| BenchmarkConfig, | |
| InferenceConfig, | |
| ProcessConfig, | |
| PyTorchConfig, | |
| OVConfig, | |
| ) | |
| from optimum_benchmark.logging_utils import setup_logging | |
| from optimum_benchmark.task_utils import infer_task_from_model_name_or_path | |
| DEVICE = "cpu" | |
| LAUNCHER = "process" | |
| SCENARIO = "inference" | |
| BACKENDS = ["pytorch", "openvino"] | |
| TASKS = set(TASKS_TO_OVMODELS.keys() | TASKS_TO_OVPIPELINES) & set( | |
| TASKS_TO_AUTO_MODEL_CLASS_NAMES.keys() | TASKS_TO_AUTO_PIPELINE_CLASS_NAMES.keys() | |
| ) | |
| def parse_configs(inputs): | |
| configs = {"process": {}, "inference": {}, "pytorch": {}, "openvino": {}} | |
| for key, value in inputs.items(): | |
| if key.label == "model": | |
| model = value | |
| elif key.label == "task": | |
| task = value | |
| elif key.label == "openvino_model": | |
| openvino_label = value | |
| elif "." in key.label: | |
| backend, argument = key.label.split(".") | |
| configs[backend][argument] = value | |
| else: | |
| continue | |
| for key in configs.keys(): | |
| for k, v in configs[key].items(): | |
| if k in [ | |
| "input_shapes", | |
| "reshape_kwargs", | |
| "generate_kwargs", | |
| "numactl_kwargs", | |
| "call_kwargs", | |
| ]: | |
| configs[key][k] = eval(v) | |
| configs["process"] = ProcessConfig(**configs.pop("process")) | |
| configs["inference"] = InferenceConfig(**configs.pop("inference")) | |
| configs["pytorch"] = PyTorchConfig( | |
| task=task, | |
| model=model, | |
| device=DEVICE, | |
| **{k: v for k, v in configs["pytorch"].items() if v}, | |
| ) | |
| configs["openvino"] = OVConfig( | |
| task=task, | |
| model=openvino_label or model, | |
| device=DEVICE, | |
| **{k: v for k, v in configs["openvino"].items() if v}, | |
| ) | |
| return configs | |
| def run_benchmark(inputs, oauth_token: Optional[gr.OAuthToken]): | |
| if oauth_token is None: | |
| raise gr.Error("Please login to be able to run the benchmark.") | |
| timestamp = time.strftime("%Y-%m-%d-%H:%M:%S") | |
| user_name = whoami(oauth_token.token)["name"] | |
| repo_id = f"{user_name}/benchmarks" | |
| folder = f"{timestamp}" | |
| try: | |
| create_repo( | |
| repo_id=repo_id, repo_type="dataset", token=oauth_token.token, exist_ok=True | |
| ) | |
| gr.Info(f"π© Benchmarks will be saved under {repo_id} in the folder {folder}") | |
| except Exception: | |
| gr.Info( | |
| f"β Error while creating the repo {repo_id} where benchmarks are to be saved" | |
| ) | |
| outputs = {backend: "Running..." for backend in BACKENDS} | |
| configs = parse_configs(inputs) | |
| yield tuple(outputs[b] for b in BACKENDS) | |
| for backend in BACKENDS: | |
| try: | |
| benchmark_name = f"{folder}/{backend}" | |
| benchmark_config = BenchmarkConfig( | |
| name=benchmark_name, | |
| backend=configs[backend], | |
| launcher=configs[LAUNCHER], | |
| scenario=configs[SCENARIO], | |
| ) | |
| benchmark_report = Benchmark.launch(benchmark_config) | |
| benchmark_config.push_to_hub( | |
| repo_id=repo_id, | |
| subfolder=benchmark_name, | |
| token=oauth_token.token, | |
| ) | |
| benchmark_report.push_to_hub( | |
| repo_id=repo_id, | |
| subfolder=benchmark_name, | |
| token=oauth_token.token, | |
| ) | |
| except GatedRepoError: | |
| outputs[backend] = f"π Model {configs[backend].model} is gated." | |
| yield tuple(outputs[b] for b in BACKENDS) | |
| gr.Info("π Gated Repo Error while trying to access the model.") | |
| except Exception: | |
| outputs[backend] = f"\n```python-traceback\n{traceback.format_exc()}```\n" | |
| yield tuple(outputs[b] for b in BACKENDS) | |
| gr.Info(f"β Error while running benchmark for {backend} backend.") | |
| else: | |
| outputs[backend] = f"\n{benchmark_report.to_markdown_text()}\n" | |
| yield tuple(outputs[b] for b in BACKENDS) | |
| gr.Info(f"β Benchmark for {backend} backend ran successfully.") | |
| def update_task(model_id): | |
| try: | |
| inferred_task = infer_task_from_model_name_or_path(model_id) | |
| except GatedRepoError: | |
| raise gr.Error( | |
| f"Model {model_id} is gated, please use optimum-benchmark locally to benchmark it." | |
| ) | |
| except Exception: | |
| raise gr.Error( | |
| f"Error while inferring task for {model_id}, please select a task manually." | |
| ) | |
| if inferred_task not in TASKS: | |
| raise gr.Error( | |
| f"Task {inferred_task} is not supported by OpenVINO, please select a task manually." | |
| ) | |
| return inferred_task | |
| with gr.Blocks() as demo: | |
| # add login button | |
| gr.LoginButton() | |
| # add image | |
| gr.HTML( | |
| """<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">""" | |
| "<h1 style='text-align: center'>π€ Optimum-Benchmark Interface ποΈ</h1>" | |
| "<p style='text-align: center'>" | |
| "This Space uses <a href='https://github.com/huggingface/optimum-benchmark.git'>Optimum-Benchmark</a> to automatically benchmark a model from the Hub on different backends." | |
| "<br>The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub." | |
| "</p>" | |
| ) | |
| with gr.Column(variant="panel"): | |
| model = HuggingfaceHubSearch( | |
| placeholder="Search for a PyTorch model", | |
| sumbit_on_select=True, | |
| search_type="model", | |
| label="model", | |
| ) | |
| openvino_model = HuggingfaceHubSearch( | |
| placeholder="Search for an OpenVINO model (optional)", | |
| label="openvino_model", | |
| sumbit_on_select=True, | |
| search_type="model", | |
| ) | |
| with gr.Row(): | |
| task = gr.Dropdown( | |
| info="Task to run the benchmark on.", | |
| elem_id="task-dropdown", | |
| choices=TASKS, | |
| label="task", | |
| ) | |
| with gr.Column(variant="panel"): | |
| with gr.Accordion(label="Process Config", open=False, visible=True): | |
| process_config = get_process_config() | |
| with gr.Accordion(label="Inference Config", open=False, visible=True): | |
| inference_config = get_inference_config() | |
| with gr.Row() as backend_configs: | |
| with gr.Accordion(label="PyTorch Config", open=False, visible=True): | |
| pytorch_config = get_pytorch_config() | |
| with gr.Accordion(label="OpenVINO Config", open=False, visible=True): | |
| openvino_config = get_openvino_config() | |
| with gr.Row(): | |
| button = gr.Button(value="Run Benchmark", variant="primary") | |
| with gr.Row(): | |
| with gr.Accordion(label="PyTorch Report", open=True, visible=True): | |
| pytorch_report = gr.Markdown() | |
| with gr.Accordion(label="OpenVINO Report", open=True, visible=True): | |
| openvino_report = gr.Markdown() | |
| model.submit(inputs=model, outputs=task, fn=update_task) | |
| button.click( | |
| fn=run_benchmark, | |
| inputs={ | |
| task, | |
| model, | |
| openvino_model, | |
| # backends, | |
| *process_config.values(), | |
| *inference_config.values(), | |
| *pytorch_config.values(), | |
| *openvino_config.values(), | |
| }, | |
| outputs={ | |
| pytorch_report, | |
| openvino_report, | |
| }, | |
| concurrency_limit=1, | |
| ) | |
| if __name__ == "__main__": | |
| os.environ["LOG_TO_FILE"] = "0" | |
| os.environ["LOG_LEVEL"] = "INFO" | |
| setup_logging(level="INFO", prefix="MAIN-PROCESS") | |
| demo.queue(max_size=10).launch() | |