Spaces:
Running
Running
import os | |
import time | |
import traceback | |
from config_store import ( | |
get_process_config, | |
get_inference_config, | |
get_openvino_config, | |
get_pytorch_config, | |
) | |
import gradio as gr | |
from huggingface_hub import create_repo, whoami | |
from optimum_benchmark.launchers.device_isolation_utils import * # noqa | |
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL | |
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS | |
from optimum_benchmark import ( | |
Benchmark, | |
BenchmarkConfig, | |
ProcessConfig, | |
InferenceConfig, | |
PyTorchConfig, | |
OVConfig, | |
) | |
from optimum_benchmark.logging_utils import setup_logging | |
DEVICE = "cpu" | |
LAUNCHER = "process" | |
SCENARIO = "inference" | |
BACKENDS = ["pytorch", "openvino"] | |
MODELS = [ | |
"openai-community/gpt2", | |
"google-bert/bert-base-uncased", | |
"hf-internal-testing/tiny-random-LlamaForCausalLM", | |
"hf-internal-testing/tiny-random-BertForSequenceClassification", | |
] | |
MODELS_TO_TASKS = { | |
"openai-community/gpt2": "text-generation", | |
"google-bert/bert-base-uncased": "text-classification", | |
"hf-internal-testing/tiny-random-LlamaForCausalLM": "text-generation", | |
"hf-internal-testing/tiny-random-BertForSequenceClassification": "text-classification", | |
} | |
TASKS = set(TASKS_TO_OVMODEL.keys()) & set(TASKS_TO_MODEL_LOADERS.keys()) | |
def run_benchmark(kwargs, oauth_token: gr.OAuthToken): | |
if oauth_token.token is None: | |
gr.Error("Please login to be able to run the benchmark.") | |
return tuple(None for _ in BACKENDS) | |
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S") | |
username = whoami(oauth_token.token)["name"] | |
repo_id = f"{username}/benchmarks" | |
token = oauth_token.token | |
create_repo(repo_id, token=token, repo_type="dataset", exist_ok=True) | |
gr.Info(f'Created repository "{repo_id}" where results will be pushed.') | |
configs = { | |
"process": {}, | |
"inference": {}, | |
"pytorch": {}, | |
"openvino": {}, | |
} | |
for key, value in kwargs.items(): | |
if key.label == "model": | |
model = value | |
elif key.label == "task": | |
task = value | |
elif key.label == "backends": | |
backends = value | |
elif "." in key.label: | |
backend, argument = key.label.split(".") | |
configs[backend][argument] = value | |
else: | |
continue | |
for key in configs.keys(): | |
for k, v in configs[key].items(): | |
if k in ["input_shapes", "generate_kwargs", "numactl_kwargs"]: | |
configs[key][k] = eval(v) | |
configs["process"] = ProcessConfig(**configs.pop("process")) | |
configs["inference"] = InferenceConfig(**configs.pop("inference")) | |
configs["pytorch"] = PyTorchConfig( | |
task=task, | |
model=model, | |
device=DEVICE, | |
**configs["pytorch"], | |
) | |
configs["openvino"] = OVConfig( | |
task=task, | |
model=model, | |
device=DEVICE, | |
**configs["openvino"], | |
) | |
outputs = { | |
"pytorch": "Running benchmark for PyTorch backend", | |
"openvino": "Running benchmark for OpenVINO backend", | |
} | |
yield tuple(outputs[b] for b in BACKENDS) | |
for backend in backends: | |
try: | |
benchmark_name = f"{timestamp}/{backend}" | |
benchmark_config = BenchmarkConfig( | |
name=benchmark_name, | |
backend=configs[backend], | |
launcher=configs[LAUNCHER], | |
scenario=configs[SCENARIO], | |
) | |
benchmark_config.push_to_hub( | |
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token | |
) | |
benchmark_report = Benchmark.launch(benchmark_config) | |
benchmark_report.push_to_hub( | |
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token | |
) | |
benchmark = Benchmark(config=benchmark_config, report=benchmark_report) | |
benchmark.push_to_hub( | |
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token | |
) | |
gr.Info(f"Pushed benchmark to {username}/benchmarks/{benchmark_name}") | |
outputs[backend] = f"\n{benchmark_report.to_markdown_text()}" | |
yield tuple(outputs[b] for b in BACKENDS) | |
except Exception: | |
gr.Error(f"Error while running benchmark for {backend}") | |
outputs[backend] = f"\n```python\n{traceback.format_exc()}```" | |
yield tuple(outputs[b] for b in BACKENDS) | |
def build_demo(): | |
with gr.Blocks() as demo: | |
# add login button | |
gr.LoginButton(min_width=250) | |
# add image | |
gr.HTML( | |
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">""" | |
"<h1 style='text-align: center'>π€ Optimum-Benchmark Interface ποΈ</h1>" | |
"<p style='text-align: center'>" | |
"This Space uses <a href='https://github.com/huggingface/optimum-benchmark.git'>Optimum-Benchmark</a> to automatically benchmark a model from the Hub on different backends." | |
"<br>The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub." | |
"</p>" | |
) | |
model = gr.Dropdown( | |
label="model", | |
choices=MODELS, | |
value=MODELS[0], | |
info="Model to run the benchmark on.", | |
) | |
task = gr.Dropdown( | |
label="task", | |
choices=TASKS, | |
value="feature-extraction", | |
info="Task to run the benchmark on.", | |
) | |
backends = gr.CheckboxGroup( | |
interactive=True, | |
label="backends", | |
choices=BACKENDS, | |
value=BACKENDS, | |
info="Backends to run the benchmark on.", | |
) | |
with gr.Row(): | |
with gr.Accordion(label="Process Config", open=False, visible=True): | |
process_config = get_process_config() | |
with gr.Row(): | |
with gr.Accordion(label="Inference Config", open=False, visible=True): | |
inference_config = get_inference_config() | |
with gr.Row() as backend_configs: | |
with gr.Accordion(label="PyTorch Config", open=False, visible=True): | |
pytorch_config = get_pytorch_config() | |
with gr.Accordion(label="OpenVINO Config", open=False, visible=True): | |
openvino_config = get_openvino_config() | |
with gr.Row(): | |
button = gr.Button(value="Run Benchmark", variant="primary") | |
with gr.Row() as markdown_outputs: | |
with gr.Accordion(label="PyTorch Output", open=True, visible=True): | |
pytorch_output = gr.Markdown() | |
with gr.Accordion(label="OpenVINO Output", open=True, visible=True): | |
openvino_output = gr.Markdown() | |
model.change( | |
inputs=model, outputs=task, fn=lambda value: MODELS_TO_TASKS[value] | |
) | |
backends.change( | |
inputs=backends, | |
outputs=backend_configs.children, | |
fn=lambda values: [ | |
gr.update(visible=value in values) for value in BACKENDS | |
], | |
) | |
backends.change( | |
inputs=backends, | |
outputs=markdown_outputs.children, | |
fn=lambda values: [ | |
gr.update(visible=value in values) for value in BACKENDS | |
], | |
) | |
button.click( | |
fn=run_benchmark, | |
inputs={ | |
task, | |
model, | |
backends, | |
*process_config.values(), | |
*inference_config.values(), | |
*pytorch_config.values(), | |
*openvino_config.values(), | |
}, | |
outputs={ | |
pytorch_output, | |
openvino_output, | |
}, | |
concurrency_limit=1, | |
) | |
return demo | |
demo = build_demo() | |
if __name__ == "__main__": | |
os.environ["LOG_TO_FILE"] = "0" | |
os.environ["LOG_LEVEL"] = "INFO" | |
setup_logging(level="INFO", prefix="MAIN-PROCESS") | |
demo.queue(max_size=10).launch() | |