|
import tempfile |
|
|
|
import numpy as np |
|
import torch |
|
import trimesh |
|
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config |
|
from shap_e.diffusion.sample import sample_latents |
|
from shap_e.models.download import load_config, load_model |
|
from shap_e.models.nn.camera import (DifferentiableCameraBatch, |
|
DifferentiableProjectiveCamera) |
|
from shap_e.models.transmitter.base import Transmitter, VectorDecoder |
|
from shap_e.rendering.torch_mesh import TorchMesh |
|
from shap_e.util.collections import AttrDict |
|
from shap_e.util.image_util import load_image |
|
|
|
|
|
|
|
def create_pan_cameras(size: int, |
|
device: torch.device) -> DifferentiableCameraBatch: |
|
origins = [] |
|
xs = [] |
|
ys = [] |
|
zs = [] |
|
for theta in np.linspace(0, 2 * np.pi, num=20): |
|
z = np.array([np.sin(theta), np.cos(theta), -0.5]) |
|
z /= np.sqrt(np.sum(z**2)) |
|
origin = -z * 4 |
|
x = np.array([np.cos(theta), -np.sin(theta), 0.0]) |
|
y = np.cross(z, x) |
|
origins.append(origin) |
|
xs.append(x) |
|
ys.append(y) |
|
zs.append(z) |
|
return DifferentiableCameraBatch( |
|
shape=(1, len(xs)), |
|
flat_camera=DifferentiableProjectiveCamera( |
|
origin=torch.from_numpy(np.stack(origins, |
|
axis=0)).float().to(device), |
|
x=torch.from_numpy(np.stack(xs, axis=0)).float().to(device), |
|
y=torch.from_numpy(np.stack(ys, axis=0)).float().to(device), |
|
z=torch.from_numpy(np.stack(zs, axis=0)).float().to(device), |
|
width=size, |
|
height=size, |
|
x_fov=0.7, |
|
y_fov=0.7, |
|
), |
|
) |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def decode_latent_mesh( |
|
xm: Transmitter | VectorDecoder, |
|
latent: torch.Tensor, |
|
) -> TorchMesh: |
|
decoded = xm.renderer.render_views( |
|
AttrDict(cameras=create_pan_cameras( |
|
2, latent.device)), |
|
params=(xm.encoder if isinstance(xm, Transmitter) else |
|
xm).bottleneck_to_params(latent[None]), |
|
options=AttrDict(rendering_mode='stf', render_with_direction=False), |
|
) |
|
return decoded.raw_meshes[0] |
|
|
|
|
|
class Model: |
|
def __init__(self): |
|
self.device = torch.device( |
|
'cuda' if torch.cuda.is_available() else 'cpu') |
|
self.xm = load_model('transmitter', device=self.device) |
|
self.diffusion = diffusion_from_config(load_config('diffusion')) |
|
self.model_text = None |
|
self.model_image = None |
|
|
|
def load_model(self, model_name: str) -> None: |
|
assert model_name in ['text300M', 'image300M'] |
|
if model_name == 'text300M' and self.model_text is None: |
|
self.model_text = load_model(model_name, device=self.device) |
|
elif model_name == 'image300M' and self.model_image is None: |
|
self.model_image = load_model(model_name, device=self.device) |
|
|
|
def to_glb(self, latent: torch.Tensor) -> str: |
|
ply_path = tempfile.NamedTemporaryFile(suffix='.ply', |
|
delete=False, |
|
mode='w+b') |
|
decode_latent_mesh(self.xm, latent).tri_mesh().write_ply(ply_path) |
|
|
|
return ply_path.name |
|
|
|
def run_text(self, |
|
prompt: str, |
|
seed: int = 0, |
|
guidance_scale: float = 15.0, |
|
num_steps: int = 64) -> str: |
|
self.load_model('text300M') |
|
torch.manual_seed(seed) |
|
|
|
latents = sample_latents( |
|
batch_size=1, |
|
model=self.model_text, |
|
diffusion=self.diffusion, |
|
guidance_scale=guidance_scale, |
|
model_kwargs=dict(texts=[prompt]), |
|
progress=True, |
|
clip_denoised=True, |
|
use_fp16=True, |
|
use_karras=True, |
|
karras_steps=num_steps, |
|
sigma_min=1e-3, |
|
sigma_max=160, |
|
s_churn=0, |
|
) |
|
return self.to_glb(latents[0]) |
|
|
|
def run_image(self, |
|
image_path: str, |
|
seed: int = 0, |
|
guidance_scale: float = 3.0, |
|
num_steps: int = 64) -> str: |
|
self.load_model('image300M') |
|
torch.manual_seed(seed) |
|
|
|
image = load_image(image_path) |
|
latents = sample_latents( |
|
batch_size=1, |
|
model=self.model_image, |
|
diffusion=self.diffusion, |
|
guidance_scale=guidance_scale, |
|
model_kwargs=dict(images=[image]), |
|
progress=True, |
|
clip_denoised=True, |
|
use_fp16=True, |
|
use_karras=True, |
|
karras_steps=num_steps, |
|
sigma_min=1e-3, |
|
sigma_max=160, |
|
s_churn=0, |
|
) |
|
return self.to_glb(latents[0]) |
|
|