Spaces:
Build error
Build error
#!/usr/bin/env python3 | |
from __future__ import annotations | |
import json | |
import os | |
import shutil | |
import struct | |
import sys | |
import tempfile | |
from enum import IntEnum, auto | |
from io import BufferedWriter | |
from pathlib import Path | |
from typing import IO, Any, BinaryIO, Callable, Sequence | |
import numpy as np | |
# | |
# constants | |
# | |
GGUF_MAGIC = 0x46554747 | |
GGUF_VERSION = 2 | |
GGUF_DEFAULT_ALIGNMENT = 32 | |
# general | |
KEY_GENERAL_ARCHITECTURE = "general.architecture" | |
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version" | |
KEY_GENERAL_ALIGNMENT = "general.alignment" | |
KEY_GENERAL_NAME = "general.name" | |
KEY_GENERAL_AUTHOR = "general.author" | |
KEY_GENERAL_URL = "general.url" | |
KEY_GENERAL_DESCRIPTION = "general.description" | |
KEY_GENERAL_LICENSE = "general.license" | |
KEY_GENERAL_SOURCE_URL = "general.source.url" | |
KEY_GENERAL_SOURCE_HF_REPO = "general.source.huggingface.repository" | |
KEY_GENERAL_FILE_TYPE = "general.file_type" | |
# LLM | |
KEY_CONTEXT_LENGTH = "{arch}.context_length" | |
KEY_EMBEDDING_LENGTH = "{arch}.embedding_length" | |
KEY_BLOCK_COUNT = "{arch}.block_count" | |
KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" | |
KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" | |
KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" | |
# attention | |
KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count" | |
KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv" | |
KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias" | |
KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv" | |
KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" | |
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" | |
# RoPE | |
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count" | |
KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base" | |
KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear" | |
# tokenization | |
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model" | |
KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens" | |
KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type" | |
KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores" | |
KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges" | |
KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id" | |
KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id" | |
KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id" | |
KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id" | |
KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id" | |
KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json" | |
KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" | |
# | |
# recommended mapping of model tensor names for storage in gguf | |
# | |
class MODEL_ARCH(IntEnum): | |
LLAMA : int = auto() | |
FALCON : int = auto() | |
BAICHUAN : int = auto() | |
GPT2 : int = auto() | |
GPTJ : int = auto() | |
GPTNEOX : int = auto() | |
MPT : int = auto() | |
STARCODER : int = auto() | |
PERSIMMON : int = auto() | |
REFACT : int = auto() | |
BERT : int = auto() | |
BLOOM : int = auto() | |
class MODEL_TENSOR(IntEnum): | |
TOKEN_EMBD : int = auto() | |
TOKEN_EMBD_NORM : int = auto() | |
TOKEN_TYPES : int = auto() | |
POS_EMBD : int = auto() | |
OUTPUT : int = auto() | |
OUTPUT_NORM : int = auto() | |
ROPE_FREQS : int = auto() | |
ATTN_Q : int = auto() | |
ATTN_K : int = auto() | |
ATTN_V : int = auto() | |
ATTN_QKV : int = auto() | |
ATTN_OUT : int = auto() | |
ATTN_NORM : int = auto() | |
ATTN_NORM_2 : int = auto() | |
ATTN_ROT_EMBD : int = auto() | |
FFN_GATE : int = auto() | |
FFN_DOWN : int = auto() | |
FFN_UP : int = auto() | |
FFN_NORM : int = auto() | |
ATTN_Q_NORM : int = auto() | |
ATTN_K_NORM : int = auto() | |
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { | |
MODEL_ARCH.LLAMA: "llama", | |
MODEL_ARCH.FALCON: "falcon", | |
MODEL_ARCH.BAICHUAN: "baichuan", | |
MODEL_ARCH.GPT2: "gpt2", | |
MODEL_ARCH.GPTJ: "gptj", | |
MODEL_ARCH.GPTNEOX: "gptneox", | |
MODEL_ARCH.MPT: "mpt", | |
MODEL_ARCH.STARCODER: "starcoder", | |
MODEL_ARCH.PERSIMMON: "persimmon", | |
MODEL_ARCH.REFACT: "refact", | |
MODEL_ARCH.BERT: "bert", | |
MODEL_ARCH.BLOOM: "bloom", | |
} | |
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { | |
MODEL_TENSOR.TOKEN_EMBD: "token_embd", | |
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", | |
MODEL_TENSOR.TOKEN_TYPES: "token_types", | |
MODEL_TENSOR.POS_EMBD: "position_embd", | |
MODEL_TENSOR.OUTPUT_NORM: "output_norm", | |
MODEL_TENSOR.OUTPUT: "output", | |
MODEL_TENSOR.ROPE_FREQS: "rope_freqs", | |
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", | |
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", | |
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", | |
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", | |
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", | |
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", | |
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", | |
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", | |
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", | |
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", | |
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", | |
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", | |
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", | |
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", | |
} | |
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { | |
MODEL_ARCH.LLAMA: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ROPE_FREQS, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_Q, | |
MODEL_TENSOR.ATTN_K, | |
MODEL_TENSOR.ATTN_V, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.ATTN_ROT_EMBD, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_GATE, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.GPTNEOX: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_QKV, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.FALCON: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_NORM_2, | |
MODEL_TENSOR.ATTN_QKV, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.BAICHUAN: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ROPE_FREQS, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_Q, | |
MODEL_TENSOR.ATTN_K, | |
MODEL_TENSOR.ATTN_V, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.ATTN_ROT_EMBD, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_GATE, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.STARCODER: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.POS_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_QKV, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.BERT: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.TOKEN_TYPES, | |
MODEL_TENSOR.POS_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_Q, | |
MODEL_TENSOR.ATTN_K, | |
MODEL_TENSOR.ATTN_V, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.MPT: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_QKV, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.GPTJ: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_Q, | |
MODEL_TENSOR.ATTN_K, | |
MODEL_TENSOR.ATTN_V, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.PERSIMMON: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_QKV, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
MODEL_TENSOR.ATTN_Q_NORM, | |
MODEL_TENSOR.ATTN_K_NORM, | |
MODEL_TENSOR.ATTN_ROT_EMBD, | |
], | |
MODEL_ARCH.REFACT: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_Q, | |
MODEL_TENSOR.ATTN_K, | |
MODEL_TENSOR.ATTN_V, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_GATE, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.BLOOM: [ | |
MODEL_TENSOR.TOKEN_EMBD, | |
MODEL_TENSOR.TOKEN_EMBD_NORM, | |
MODEL_TENSOR.OUTPUT_NORM, | |
MODEL_TENSOR.OUTPUT, | |
MODEL_TENSOR.ATTN_NORM, | |
MODEL_TENSOR.ATTN_QKV, | |
MODEL_TENSOR.ATTN_OUT, | |
MODEL_TENSOR.FFN_NORM, | |
MODEL_TENSOR.FFN_DOWN, | |
MODEL_TENSOR.FFN_UP, | |
], | |
MODEL_ARCH.GPT2: [ | |
# TODO | |
], | |
# TODO | |
} | |
# tensors that will not be serialized | |
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { | |
MODEL_ARCH.LLAMA: [ | |
MODEL_TENSOR.ROPE_FREQS, | |
MODEL_TENSOR.ATTN_ROT_EMBD, | |
], | |
MODEL_ARCH.BAICHUAN: [ | |
MODEL_TENSOR.ROPE_FREQS, | |
MODEL_TENSOR.ATTN_ROT_EMBD, | |
], | |
MODEL_ARCH.PERSIMMON: [ | |
MODEL_TENSOR.ROPE_FREQS, | |
] | |
} | |
class TensorNameMap: | |
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { | |
# Token embeddings | |
MODEL_TENSOR.TOKEN_EMBD: ( | |
"gpt_neox.embed_in", # gptneox | |
"transformer.wte", # gpt2 gpt-j mpt refact | |
"transformer.word_embeddings", # falcon | |
"word_embeddings", # bloom | |
"model.embed_tokens", # llama-hf | |
"tok_embeddings", # llama-pth | |
"embeddings.word_embeddings", # bert | |
"language_model.embedding.word_embeddings", # persimmon | |
), | |
# Token type embeddings | |
MODEL_TENSOR.TOKEN_TYPES: ( | |
"embeddings.token_type_embeddings", # bert | |
), | |
# Normalization of token embeddings | |
MODEL_TENSOR.TOKEN_EMBD_NORM: ( | |
"word_embeddings_layernorm", # bloom | |
), | |
# Position embeddings | |
MODEL_TENSOR.POS_EMBD: ( | |
"transformer.wpe", # gpt2 | |
"embeddings.position_embeddings", # bert | |
), | |
# Output | |
MODEL_TENSOR.OUTPUT: ( | |
"embed_out", # gptneox | |
"lm_head", # gpt2 mpt falcon llama-hf baichuan | |
"output", # llama-pth bloom | |
"word_embeddings_for_head", # persimmon | |
), | |
# Output norm | |
MODEL_TENSOR.OUTPUT_NORM: ( | |
"gpt_neox.final_layer_norm", # gptneox | |
"transformer.ln_f", # gpt2 gpt-j falcon | |
"model.norm", # llama-hf baichuan | |
"norm", # llama-pth | |
"embeddings.LayerNorm", # bert | |
"transformer.norm_f", # mpt | |
"ln_f", # refact bloom | |
"language_model.encoder.final_layernorm", # persimmon | |
), | |
# Rope frequencies | |
MODEL_TENSOR.ROPE_FREQS: ( | |
"rope.freqs", # llama-pth | |
), | |
} | |
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { | |
# Attention norm | |
MODEL_TENSOR.ATTN_NORM: ( | |
"gpt_neox.layers.{bid}.input_layernorm", # gptneox | |
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact | |
"transformer.blocks.{bid}.norm_1", # mpt | |
"transformer.h.{bid}.input_layernorm", # falcon7b | |
"h.{bid}.input_layernorm", # bloom | |
"transformer.h.{bid}.ln_mlp", # falcon40b | |
"model.layers.{bid}.input_layernorm", # llama-hf | |
"layers.{bid}.attention_norm", # llama-pth | |
"encoder.layer.{bid}.attention.output.LayerNorm", # bert | |
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon | |
), | |
# Attention norm 2 | |
MODEL_TENSOR.ATTN_NORM_2: ( | |
"transformer.h.{bid}.ln_attn", # falcon40b | |
), | |
# Attention query-key-value | |
MODEL_TENSOR.ATTN_QKV: ( | |
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox | |
"transformer.h.{bid}.attn.c_attn", # gpt2 | |
"transformer.blocks.{bid}.attn.Wqkv", # mpt | |
"transformer.h.{bid}.self_attention.query_key_value", # falcon | |
"h.{bid}.self_attention.query_key_value", # bloom | |
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon | |
), | |
# Attention query | |
MODEL_TENSOR.ATTN_Q: ( | |
"model.layers.{bid}.self_attn.q_proj", # llama-hf | |
"layers.{bid}.attention.wq", # llama-pth | |
"encoder.layer.{bid}.attention.self.query", # bert | |
"transformer.h.{bid}.attn.q_proj", # gpt-j | |
), | |
# Attention key | |
MODEL_TENSOR.ATTN_K: ( | |
"model.layers.{bid}.self_attn.k_proj", # llama-hf | |
"layers.{bid}.attention.wk", # llama-pth | |
"encoder.layer.{bid}.attention.self.key", # bert | |
"transformer.h.{bid}.attn.k_proj", # gpt-j | |
), | |
# Attention value | |
MODEL_TENSOR.ATTN_V: ( | |
"model.layers.{bid}.self_attn.v_proj", # llama-hf | |
"layers.{bid}.attention.wv", # llama-pth | |
"encoder.layer.{bid}.attention.self.value", # bert | |
"transformer.h.{bid}.attn.v_proj", # gpt-j | |
), | |
# Attention output | |
MODEL_TENSOR.ATTN_OUT: ( | |
"gpt_neox.layers.{bid}.attention.dense", # gptneox | |
"transformer.h.{bid}.attn.c_proj", # gpt2 refact | |
"transformer.blocks.{bid}.attn.out_proj", # mpt | |
"transformer.h.{bid}.self_attention.dense", # falcon | |
"h.{bid}.self_attention.dense", # bloom | |
"model.layers.{bid}.self_attn.o_proj", # llama-hf | |
"layers.{bid}.attention.wo", # llama-pth | |
"encoder.layer.{bid}.attention.output.dense", # bert | |
"transformer.h.{bid}.attn.out_proj", # gpt-j | |
"language_model.encoder.layers.{bid}.self_attention.dense" # persimmon | |
), | |
# Rotary embeddings | |
MODEL_TENSOR.ATTN_ROT_EMBD: ( | |
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf | |
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth | |
), | |
# Feed-forward norm | |
MODEL_TENSOR.FFN_NORM: ( | |
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox | |
"transformer.h.{bid}.ln_2", # gpt2 refact | |
"h.{bid}.post_attention_layernorm", # bloom | |
"transformer.blocks.{bid}.norm_2", # mpt | |
"model.layers.{bid}.post_attention_layernorm", # llama-hf | |
"layers.{bid}.ffn_norm", # llama-pth | |
"encoder.layer.{bid}.output.LayerNorm", # bert | |
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon | |
), | |
# Feed-forward up | |
MODEL_TENSOR.FFN_UP: ( | |
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox | |
"transformer.h.{bid}.mlp.c_fc", # gpt2 | |
"transformer.blocks.{bid}.ffn.up_proj", # mpt | |
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon | |
"h.{bid}.mlp.dense_h_to_4h", # bloom | |
"model.layers.{bid}.mlp.up_proj", # llama-hf refact | |
"layers.{bid}.feed_forward.w3", # llama-pth | |
"encoder.layer.{bid}.intermediate.dense", # bert | |
"transformer.h.{bid}.mlp.fc_in", # gpt-j | |
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon | |
), | |
# Feed-forward gate | |
MODEL_TENSOR.FFN_GATE: ( | |
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact | |
"layers.{bid}.feed_forward.w1", # llama-pth | |
), | |
# Feed-forward down | |
MODEL_TENSOR.FFN_DOWN: ( | |
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox | |
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact | |
"transformer.blocks.{bid}.ffn.down_proj", # mpt | |
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon | |
"h.{bid}.mlp.dense_4h_to_h", # bloom | |
"model.layers.{bid}.mlp.down_proj", # llama-hf | |
"layers.{bid}.feed_forward.w2", # llama-pth | |
"encoder.layer.{bid}.output.dense", # bert | |
"transformer.h.{bid}.mlp.fc_out", # gpt-j | |
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon | |
), | |
MODEL_TENSOR.ATTN_Q_NORM: ( | |
"language_model.encoder.layers.{bid}.self_attention.q_layernorm", | |
), | |
MODEL_TENSOR.ATTN_K_NORM: ( | |
"language_model.encoder.layers.{bid}.self_attention.k_layernorm", | |
), | |
MODEL_TENSOR.ROPE_FREQS: ( | |
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon | |
) | |
} | |
mapping: dict[str, tuple[MODEL_TENSOR, str]] | |
def __init__(self, arch: MODEL_ARCH, n_blocks: int): | |
self.mapping = {} | |
for tensor, keys in self.mappings_cfg.items(): | |
if tensor not in MODEL_TENSORS[arch]: | |
continue | |
tensor_name = TENSOR_NAMES[tensor] | |
self.mapping[tensor_name] = (tensor, tensor_name) | |
for key in keys: | |
self.mapping[key] = (tensor, tensor_name) | |
for bid in range(n_blocks): | |
for tensor, keys in self.block_mappings_cfg.items(): | |
if tensor not in MODEL_TENSORS[arch]: | |
continue | |
tensor_name = TENSOR_NAMES[tensor].format(bid = bid) | |
self.mapping[tensor_name] = (tensor, tensor_name) | |
for key in keys: | |
key = key.format(bid = bid) | |
self.mapping[key] = (tensor, tensor_name) | |
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: | |
result = self.mapping.get(key) | |
if result is not None: | |
return result | |
for suffix in try_suffixes: | |
if key.endswith(suffix): | |
result = self.mapping.get(key[:-len(suffix)]) | |
if result is not None: | |
return (result[0], result[1] + suffix) | |
return None | |
def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None: | |
result = self.get_type_and_name(key, try_suffixes = try_suffixes) | |
if result is None: | |
return None | |
return result[1] | |
def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None: | |
result = self.get_type_and_name(key, try_suffixes = try_suffixes) | |
if result is None: | |
return None | |
return result[0] | |
def __getitem__(self, key: str) -> str: | |
try: | |
return self.mapping[key][1] | |
except KeyError: | |
raise KeyError(key) | |
def __contains__(self, key: str) -> bool: | |
return key in self.mapping | |
def __repr__(self) -> str: | |
return repr(self.mapping) | |
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap: | |
return TensorNameMap(arch, n_blocks) | |
class TokenType(IntEnum): | |
NORMAL = 1 | |
UNKNOWN = 2 | |
CONTROL = 3 | |
USER_DEFINED = 4 | |
UNUSED = 5 | |
BYTE = 6 | |
# | |
# implementation | |
# | |
class GGMLQuantizationType(IntEnum): | |
F32 = 0 | |
F16 = 1 | |
Q4_0 = 2 | |
Q4_1 = 3 | |
Q5_0 = 6 | |
Q5_1 = 7 | |
Q8_0 = 8 | |
Q8_1 = 9 | |
Q2_K = 10 | |
Q3_K = 11 | |
Q4_K = 12 | |
Q5_K = 13 | |
Q6_K = 14 | |
Q8_K = 15 | |
class GGUFValueType(IntEnum): | |
UINT8 = 0 | |
INT8 = 1 | |
UINT16 = 2 | |
INT16 = 3 | |
UINT32 = 4 | |
INT32 = 5 | |
FLOAT32 = 6 | |
BOOL = 7 | |
STRING = 8 | |
ARRAY = 9 | |
UINT64 = 10 | |
INT64 = 11 | |
FLOAT64 = 12 | |
def get_type(val): | |
if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray): | |
return GGUFValueType.STRING | |
elif isinstance(val, list): | |
return GGUFValueType.ARRAY | |
elif isinstance(val, float): | |
return GGUFValueType.FLOAT32 | |
elif isinstance(val, bool): | |
return GGUFValueType.BOOL | |
elif isinstance(val, int): | |
return GGUFValueType.INT32 | |
# TODO: need help with 64-bit types in Python | |
else: | |
print("Unknown type: "+str(type(val))) | |
sys.exit() | |
class GGUFWriter: | |
fout: BufferedWriter | |
arch: str | |
offset_tensor = 0 | |
data_alignment = GGUF_DEFAULT_ALIGNMENT | |
kv_data = b"" | |
kv_data_count = 0 | |
ti_data = b"" | |
ti_data_count = 0 | |
use_temp_file: bool | |
temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None | |
tensors: list[tuple[np.ndarray[Any, Any], int]] | |
def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True): | |
self.fout = open(path, "wb") | |
self.arch = arch | |
self.add_architecture() | |
self.use_temp_file = use_temp_file | |
self.tensors = [] | |
def write_header_to_file(self): | |
self.fout.write(struct.pack("<I", GGUF_MAGIC)) | |
self.fout.write(struct.pack("<I", GGUF_VERSION)) | |
self.fout.write(struct.pack("<Q", self.ti_data_count)) | |
self.fout.write(struct.pack("<Q", self.kv_data_count)) | |
self.flush() | |
# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count)) | |
def write_kv_data_to_file(self): | |
self.fout.write(self.kv_data) | |
self.flush() | |
def write_ti_data_to_file(self): | |
self.fout.write(self.ti_data) | |
self.flush() | |
def add_key(self, key: str): | |
self.add_val(key, GGUFValueType.STRING, add_vtype=False) | |
def add_uint8(self, key: str, val: int): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.UINT8) | |
def add_int8(self, key: str, val: int): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.INT8) | |
def add_uint16(self, key: str, val: int): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.UINT16) | |
def add_int16(self, key: str, val: int): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.INT16) | |
def add_uint32(self, key: str, val: int): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.UINT32) | |
def add_int32(self, key: str, val: int): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.INT32) | |
def add_float32(self, key: str, val: float): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.FLOAT32) | |
def add_uint64(self, key: str, val: int): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.UINT64) | |
def add_int64(self, key: str, val: int): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.INT64) | |
def add_float64(self, key: str, val: float): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.FLOAT64) | |
def add_bool(self, key: str, val: bool): | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.BOOL) | |
def add_string(self, key: str, val: str): | |
if len(val) == 0: | |
return | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.STRING) | |
def add_array(self, key: str, val: Sequence[Any]): | |
if not isinstance(val, Sequence): | |
raise ValueError("Value must be a sequence for array type") | |
self.add_key(key) | |
self.add_val(val, GGUFValueType.ARRAY) | |
_simple_value_packing = { | |
GGUFValueType.UINT8: "<B", | |
GGUFValueType.INT8: "<b", | |
GGUFValueType.UINT16: "<H", | |
GGUFValueType.INT16: "<h", | |
GGUFValueType.UINT32: "<I", | |
GGUFValueType.INT32: "<i", | |
GGUFValueType.FLOAT32: "<f", | |
GGUFValueType.UINT64: "<Q", | |
GGUFValueType.INT64: "<q", | |
GGUFValueType.FLOAT64: "<d", | |
GGUFValueType.BOOL: "?" , | |
} | |
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True): | |
if vtype is None: | |
vtype = GGUFValueType.get_type(val) | |
if add_vtype: | |
self.kv_data += struct.pack("<I", vtype) | |
self.kv_data_count += 1 | |
pack_fmt = self._simple_value_packing.get(vtype) | |
if pack_fmt is not None: | |
self.kv_data += struct.pack(pack_fmt, val) | |
elif vtype == GGUFValueType.STRING: | |
encoded_val = val.encode("utf8") if isinstance(val, str) else val | |
self.kv_data += struct.pack("<Q", len(encoded_val)) | |
self.kv_data += encoded_val | |
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0: | |
ltype = GGUFValueType.get_type(val[0]) | |
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): | |
raise ValueError("All items in a GGUF array should be of the same type") | |
self.kv_data += struct.pack("<I", ltype) | |
self.kv_data += struct.pack("<Q", len(val)) | |
for item in val: | |
self.add_val(item, add_vtype=False) | |
else: | |
raise ValueError("Invalid GGUF metadata value type or value") | |
def ggml_pad(x: int, n: int) -> int: | |
return ((x + n - 1) // n) * n | |
def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None): | |
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now" | |
encoded_name = name.encode("utf8") | |
self.ti_data += struct.pack("<Q", len(encoded_name)) | |
self.ti_data += encoded_name | |
n_dims = len(tensor_shape) | |
self.ti_data += struct.pack("<I", n_dims) | |
for i in range(n_dims): | |
self.ti_data += struct.pack("<Q", tensor_shape[n_dims - 1 - i]) | |
if raw_dtype is None: | |
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16 | |
else: | |
dtype = raw_dtype | |
self.ti_data += struct.pack("<I", dtype) | |
self.ti_data += struct.pack("<Q", self.offset_tensor) | |
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment) | |
self.ti_data_count += 1 | |
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None): | |
if self.use_temp_file and self.temp_file is None: | |
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024) | |
fp.seek(0) | |
self.temp_file = fp | |
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape | |
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype) | |
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes | |
if self.temp_file is None: | |
self.tensors.append((tensor, pad)) | |
return | |
tensor.tofile(self.temp_file) | |
if pad != 0: | |
self.temp_file.write(bytes([0] * pad)) | |
def write_padding(self, fp: BinaryIO, n: int, align: int | None = None): | |
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n | |
if pad != 0: | |
fp.write(bytes([0] * pad)) | |
def write_tensor_data(self, tensor: np.ndarray[Any, Any]): | |
self.write_padding(self.fout, self.fout.tell()) | |
tensor.tofile(self.fout) | |
self.write_padding(self.fout, tensor.nbytes) | |
def write_tensors_to_file(self): | |
self.write_ti_data_to_file() | |
self.write_padding(self.fout, self.fout.tell()) | |
if self.temp_file is None: | |
for (currtensor, currpad) in self.tensors: | |
currtensor.tofile(self.fout) | |
if currpad != 0: | |
self.fout.write(bytes([0] * currpad)) | |
return | |
self.temp_file.seek(0) | |
shutil.copyfileobj(self.temp_file, self.fout) | |
self.flush() | |
self.temp_file.close() | |
def flush(self): | |
self.fout.flush() | |
def close(self): | |
self.fout.close() | |
def add_architecture(self): | |
self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch) | |
def add_author(self, author: str): | |
self.add_string(KEY_GENERAL_AUTHOR, author) | |
def add_tensor_data_layout(self, layout: str): | |
self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) | |
def add_url(self, url: str): | |
self.add_string(KEY_GENERAL_URL, url) | |
def add_description(self, description: str): | |
self.add_string(KEY_GENERAL_DESCRIPTION, description) | |
def add_source_url(self, url: str): | |
self.add_string(KEY_GENERAL_SOURCE_URL, url) | |
def add_source_hf_repo(self, repo: str): | |
self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo) | |
def add_file_type(self, ftype: int): | |
self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype) | |
def add_name(self, name: str): | |
self.add_string(KEY_GENERAL_NAME, name) | |
def add_quantization_version(self, quantization_version: GGMLQuantizationType): | |
self.add_uint32( | |
KEY_GENERAL_QUANTIZATION_VERSION, quantization_version) | |
def add_custom_alignment(self, alignment: int): | |
self.data_alignment = alignment | |
self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment) | |
def add_context_length(self, length: int): | |
self.add_uint32( | |
KEY_CONTEXT_LENGTH.format(arch=self.arch), length) | |
def add_embedding_length(self, length: int): | |
self.add_uint32( | |
KEY_EMBEDDING_LENGTH.format(arch=self.arch), length) | |
def add_block_count(self, length: int): | |
self.add_uint32( | |
KEY_BLOCK_COUNT.format(arch=self.arch), length) | |
def add_feed_forward_length(self, length: int): | |
self.add_uint32( | |
KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
def add_parallel_residual(self, use: bool): | |
self.add_bool( | |
KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) | |
def add_head_count(self, count: int): | |
self.add_uint32( | |
KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count) | |
def add_head_count_kv(self, count: int): | |
self.add_uint32( | |
KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count) | |
def add_max_alibi_bias(self, bias: float): | |
self.add_float32( | |
KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias) | |
def add_clamp_kqv(self, value: float): | |
self.add_float32( | |
KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value) | |
def add_layer_norm_eps(self, value: float): | |
self.add_float32( | |
KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value) | |
def add_layer_norm_rms_eps(self, value: float): | |
self.add_float32( | |
KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value) | |
def add_rope_dimension_count(self, count: int): | |
self.add_uint32( | |
KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count) | |
def add_rope_freq_base(self, value: float): | |
self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value) | |
def add_rope_scale_linear(self, value: float): | |
self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value) | |
def add_tokenizer_model(self, model: str): | |
self.add_string(KEY_TOKENIZER_MODEL, model) | |
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]): | |
self.add_array(KEY_TOKENIZER_LIST, tokens) | |
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]): | |
self.add_array(KEY_TOKENIZER_MERGES, merges) | |
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]): | |
self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types) | |
def add_token_scores(self, scores: Sequence[float]): | |
self.add_array(KEY_TOKENIZER_SCORES, scores) | |
def add_bos_token_id(self, id: int): | |
self.add_uint32(KEY_TOKENIZER_BOS_ID, id) | |
def add_eos_token_id(self, id: int): | |
self.add_uint32(KEY_TOKENIZER_EOS_ID, id) | |
def add_unk_token_id(self, id: int): | |
self.add_uint32(KEY_TOKENIZER_UNK_ID, id) | |
def add_sep_token_id(self, id: int): | |
self.add_uint32(KEY_TOKENIZER_SEP_ID, id) | |
def add_pad_token_id(self, id: int): | |
self.add_uint32(KEY_TOKENIZER_PAD_ID, id) | |
class SpecialVocab: | |
load_merges: bool = False | |
merges: list[str] = [] | |
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad') | |
special_token_ids: dict[str, int] = {} | |
def __init__( | |
self, path: str | os.PathLike[str], load_merges: bool = False, | |
special_token_types: tuple[str, ...] | None = None, | |
): | |
self.special_token_ids = {} | |
self.load_merges = load_merges | |
if special_token_types is not None: | |
self.special_token_types = special_token_types | |
self._load(Path(path)) | |
def _load(self, path: Path) -> None: | |
if not self._try_load_from_tokenizer_json(path): | |
self._try_load_from_config_json(path) | |
def _try_load_from_tokenizer_json(self, path: Path) -> bool: | |
tokenizer_file = path / 'tokenizer.json' | |
if not tokenizer_file.is_file(): | |
return False | |
with open(tokenizer_file, encoding = 'utf-8') as f: | |
tokenizer = json.load(f) | |
if self.load_merges: | |
merges = tokenizer.get('model', {}).get('merges') | |
if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str): | |
self.merges = merges | |
tokenizer_config_file = path / 'tokenizer_config.json' | |
added_tokens = tokenizer.get('added_tokens') | |
if added_tokens is None or not tokenizer_config_file.is_file(): | |
return True | |
with open(tokenizer_config_file, encoding = 'utf-8') as f: | |
tokenizer_config = json.load(f) | |
for typ in self.special_token_types: | |
entry = tokenizer_config.get(f'{typ}_token') | |
if isinstance(entry, str): | |
tc_content = entry | |
elif isinstance(entry, dict): | |
entry_content = entry.get('content') | |
if not isinstance(entry_content, str): | |
continue | |
tc_content = entry_content | |
else: | |
continue | |
for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content): | |
if isinstance(maybe_token_id, int) and maybe_token_id >= 0: | |
self.special_token_ids[typ] = maybe_token_id | |
break | |
return True | |
def _try_load_from_config_json(self, path: Path) -> bool: | |
config_file = path / 'config.json' | |
if not config_file.is_file(): | |
return False | |
with open(config_file, encoding = 'utf-8') as f: | |
config = json.load(f) | |
for typ in self.special_token_types: | |
maybe_token_id = config.get(f'{typ}_token_id') | |
if isinstance(maybe_token_id, int) and maybe_token_id >= 0: | |
self.special_token_ids[typ] = maybe_token_id | |
return True | |
def add_to_gguf(self, gw: GGUFWriter) -> None: | |
if len(self.merges) > 0: | |
print(f'gguf: Adding {len(self.merges)} merge(s).') | |
gw.add_token_merges(self.merges) | |
for typ, tokid in self.special_token_ids.items(): | |
handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None) | |
if handler is None: | |
print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping') | |
continue | |
print(f'gguf: Setting special token type {typ} to {tokid}') | |
handler(tokid) | |
def __repr__(self) -> str: | |
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids or "unset"}>' | |
# Example usage: | |
if __name__ == "__main__": | |
# Example usage with a file | |
gguf_writer = GGUFWriter("example.gguf", "llama") | |
gguf_writer.add_architecture() | |
gguf_writer.add_block_count(12) | |
gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer | |
gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float | |
gguf_writer.add_custom_alignment(64) | |
tensor1 = np.ones((32,), dtype=np.float32) * 100.0 | |
tensor2 = np.ones((64,), dtype=np.float32) * 101.0 | |
tensor3 = np.ones((96,), dtype=np.float32) * 102.0 | |
gguf_writer.add_tensor("tensor1", tensor1) | |
gguf_writer.add_tensor("tensor2", tensor2) | |
gguf_writer.add_tensor("tensor3", tensor3) | |
gguf_writer.write_header_to_file() | |
gguf_writer.write_kv_data_to_file() | |
gguf_writer.write_tensors_to_file() | |
gguf_writer.close() | |