Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"prithivMLmods/Radiology-Infer-Mini", torch_dtype="auto", device_map="auto" | |
) | |
processor = AutoProcessor.from_pretrained("prithivMLmods/Radiology-Infer-Mini") | |
def generate_report(image, text): | |
# Prepare the message | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cpu") | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
interface = gr.Interface( | |
fn=generate_report, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(label="Enter Description/Query", placeholder="Enter your query here..."), | |
], | |
outputs=gr.Textbox(label="Generated Report"), | |
title="Pter.AI Report Generator", | |
description="Upload a medical image and provide a description/query to generate a radiology report.", | |
) | |
interface.launch() |