Spaces:
Sleeping
Sleeping
Commit
·
bbb0e13
1
Parent(s):
939b9ab
Improved audion input waiting, refactored the rest
Browse files- ui/coding.py +65 -42
ui/coding.py
CHANGED
@@ -1,17 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import os
|
4 |
-
|
5 |
-
from itertools import chain
|
6 |
import time
|
|
|
|
|
|
|
7 |
|
8 |
from resources.data import fixed_messages, topic_lists, interview_types
|
9 |
from utils.ui import add_candidate_message, add_interviewer_message
|
10 |
-
from typing import List, Dict, Generator, Optional, Tuple
|
11 |
-
from functools import partial
|
12 |
from api.llm import LLMManager
|
13 |
from api.audio import TTSManager, STTManager
|
14 |
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def send_request(
|
17 |
code: str,
|
@@ -23,9 +26,23 @@ def send_request(
|
|
23 |
silent: Optional[bool] = False,
|
24 |
) -> Generator[Tuple[List[Dict[str, str]], List[List[Optional[str]]], str, bytes], None, None]:
|
25 |
"""
|
26 |
-
Send a request to the LLM and
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
"""
|
|
|
28 |
# TODO: Find the way to simplify it and remove duplication in logic
|
|
|
29 |
if silent is None:
|
30 |
silent = os.getenv("SILENT", False)
|
31 |
|
@@ -93,7 +110,16 @@ def send_request(
|
|
93 |
yield chat_history, chat_display, code, b""
|
94 |
|
95 |
|
96 |
-
def change_code_area(interview_type):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
if interview_type == "coding":
|
98 |
return gr.update(
|
99 |
label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
|
@@ -111,12 +137,22 @@ def change_code_area(interview_type):
|
|
111 |
)
|
112 |
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
|
|
|
|
120 |
send_request_partial = partial(send_request, llm=llm, tts=tts)
|
121 |
|
122 |
with gr.Tab("Interview", render=False, elem_id=f"tab") as problem_tab:
|
@@ -127,6 +163,8 @@ def get_problem_solving_ui(llm: LLMManager, tts: TTSManager, stt: STTManager, de
|
|
127 |
hi_markdown = gr.Markdown(
|
128 |
"<h2 style='text-align: center;'> Hi! I'm here to guide you through a practice session for your technical interview. Choose the interview settings to begin.</h2>\n"
|
129 |
)
|
|
|
|
|
130 |
with gr.Row() as init_acc:
|
131 |
with gr.Column(scale=3):
|
132 |
interview_type_select = gr.Dropdown(
|
@@ -183,6 +221,7 @@ def get_problem_solving_ui(llm: LLMManager, tts: TTSManager, stt: STTManager, de
|
|
183 |
)
|
184 |
start_btn = gr.Button("Generate a problem", elem_id=f"start_btn", interactive=not os.getenv("IS_DEMO", False))
|
185 |
|
|
|
186 |
with gr.Accordion("Problem statement", open=True, visible=False) as problem_acc:
|
187 |
description = gr.Markdown(elem_id=f"problem_description", line_breaks=True)
|
188 |
with gr.Accordion("Solution", open=True, visible=False) as solution_acc:
|
@@ -205,7 +244,7 @@ def get_problem_solving_ui(llm: LLMManager, tts: TTSManager, stt: STTManager, de
|
|
205 |
with gr.Accordion("Feedback", open=True, visible=False) as feedback_acc:
|
206 |
feedback = gr.Markdown(elem_id=f"feedback", line_breaks=True)
|
207 |
|
208 |
-
#
|
209 |
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
|
210 |
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
|
211 |
).success(
|
@@ -251,53 +290,37 @@ def get_problem_solving_ui(llm: LLMManager, tts: TTSManager, stt: STTManager, de
|
|
251 |
fn=llm.end_interview, inputs=[description, chat_history, interview_type_select], outputs=[feedback]
|
252 |
)
|
253 |
|
254 |
-
is_recording = gr.State(False)
|
255 |
-
audio_input.start_recording(fn=lambda: True, outputs=[is_recording])
|
256 |
-
|
257 |
hidden_text = gr.State("")
|
258 |
is_transcribing = gr.State(False)
|
|
|
259 |
audio_input.stream(
|
260 |
stt.process_audio_chunk,
|
261 |
inputs=[audio_input, audio_buffer],
|
262 |
outputs=[audio_buffer, audio_to_transcribe],
|
263 |
show_progress="hidden",
|
264 |
).success(fn=lambda: True, outputs=[is_transcribing]).success(
|
265 |
-
fn=stt.transcribe_audio, inputs=[audio_to_transcribe, hidden_text], outputs=[hidden_text], show_progress="
|
266 |
).success(
|
267 |
-
fn=stt.add_to_chat, inputs=[hidden_text, chat
|
268 |
).success(
|
269 |
fn=lambda: False, outputs=[is_transcribing]
|
270 |
)
|
271 |
|
272 |
-
#
|
273 |
-
#
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
audio_input.stop_recording(fn=lambda x: time.sleep(
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
fn=lambda x: time.sleep(int(x) / 2), inputs=[is_transcribing]
|
284 |
-
).success(
|
285 |
-
fn=lambda x: time.sleep(int(x) / 2), inputs=[is_transcribing]
|
286 |
-
).success(
|
287 |
-
fn=lambda x: time.sleep(int(x) / 2), inputs=[is_transcribing]
|
288 |
-
).success(
|
289 |
-
fn=lambda x: time.sleep(int(x) / 2), inputs=[is_transcribing]
|
290 |
-
).success(
|
291 |
-
fn=lambda: False, outputs=[is_recording]
|
292 |
-
).success(
|
293 |
fn=send_request_partial,
|
294 |
inputs=[code, previous_code, chat_history, chat],
|
295 |
outputs=[chat_history, chat, previous_code, audio_output],
|
296 |
-
).
|
297 |
-
fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer]
|
298 |
-
).success(
|
299 |
-
fn=lambda: "", outputs=[hidden_text]
|
300 |
-
)
|
301 |
|
302 |
interview_type_select.change(
|
303 |
fn=lambda x: gr.update(choices=topic_lists[x], value=np.random.choice(topic_lists[x])),
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import os
|
|
|
|
|
4 |
import time
|
5 |
+
from itertools import chain
|
6 |
+
from typing import List, Dict, Generator, Optional, Tuple, Any
|
7 |
+
from functools import partial
|
8 |
|
9 |
from resources.data import fixed_messages, topic_lists, interview_types
|
10 |
from utils.ui import add_candidate_message, add_interviewer_message
|
|
|
|
|
11 |
from api.llm import LLMManager
|
12 |
from api.audio import TTSManager, STTManager
|
13 |
|
14 |
+
DEMO_MESSAGE: str = """<span style="color: red;">
|
15 |
+
This service is running in demo mode with limited performance (e.g. slow voice recognition). For a better experience, run the service locally, refer to the Instruction tab for more details.
|
16 |
+
</span>"""
|
17 |
+
|
18 |
|
19 |
def send_request(
|
20 |
code: str,
|
|
|
26 |
silent: Optional[bool] = False,
|
27 |
) -> Generator[Tuple[List[Dict[str, str]], List[List[Optional[str]]], str, bytes], None, None]:
|
28 |
"""
|
29 |
+
Send a request to the LLM and process the response.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
code (str): Current code.
|
33 |
+
previous_code (str): Previous code.
|
34 |
+
chat_history (List[Dict[str, str]]): Current chat history.
|
35 |
+
chat_display (List[List[Optional[str]]]): Current chat display.
|
36 |
+
llm (LLMManager): LLM manager instance.
|
37 |
+
tts (Optional[TTSManager]): TTS manager instance.
|
38 |
+
silent (Optional[bool]): Whether to silence audio output. Defaults to False.
|
39 |
+
|
40 |
+
Yields:
|
41 |
+
Tuple[List[Dict[str, str]], List[List[Optional[str]]], str, bytes]: Updated chat history, chat display, code, and audio chunk.
|
42 |
"""
|
43 |
+
|
44 |
# TODO: Find the way to simplify it and remove duplication in logic
|
45 |
+
|
46 |
if silent is None:
|
47 |
silent = os.getenv("SILENT", False)
|
48 |
|
|
|
110 |
yield chat_history, chat_display, code, b""
|
111 |
|
112 |
|
113 |
+
def change_code_area(interview_type: str) -> gr.update:
|
114 |
+
"""
|
115 |
+
Update the code area based on the interview type.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
interview_type (str): Type of interview.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
gr.update: Gradio update object for the code area.
|
122 |
+
"""
|
123 |
if interview_type == "coding":
|
124 |
return gr.update(
|
125 |
label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
|
|
|
137 |
)
|
138 |
|
139 |
|
140 |
+
def get_problem_solving_ui(
|
141 |
+
llm: LLMManager, tts: TTSManager, stt: STTManager, default_audio_params: Dict[str, Any], audio_output: gr.Audio
|
142 |
+
) -> gr.Tab:
|
143 |
+
"""
|
144 |
+
Create the problem-solving UI for the interview application.
|
145 |
|
146 |
+
Args:
|
147 |
+
llm (LLMManager): LLM manager instance.
|
148 |
+
tts (TTSManager): TTS manager instance.
|
149 |
+
stt (STTManager): STT manager instance.
|
150 |
+
default_audio_params (Dict[str, Any]): Default audio parameters.
|
151 |
+
audio_output (gr.Audio): Gradio audio output component.
|
152 |
|
153 |
+
Returns:
|
154 |
+
gr.Tab: Gradio tab containing the problem-solving UI.
|
155 |
+
"""
|
156 |
send_request_partial = partial(send_request, llm=llm, tts=tts)
|
157 |
|
158 |
with gr.Tab("Interview", render=False, elem_id=f"tab") as problem_tab:
|
|
|
163 |
hi_markdown = gr.Markdown(
|
164 |
"<h2 style='text-align: center;'> Hi! I'm here to guide you through a practice session for your technical interview. Choose the interview settings to begin.</h2>\n"
|
165 |
)
|
166 |
+
|
167 |
+
# UI components for interview settings
|
168 |
with gr.Row() as init_acc:
|
169 |
with gr.Column(scale=3):
|
170 |
interview_type_select = gr.Dropdown(
|
|
|
221 |
)
|
222 |
start_btn = gr.Button("Generate a problem", elem_id=f"start_btn", interactive=not os.getenv("IS_DEMO", False))
|
223 |
|
224 |
+
# Problem statement and solution components
|
225 |
with gr.Accordion("Problem statement", open=True, visible=False) as problem_acc:
|
226 |
description = gr.Markdown(elem_id=f"problem_description", line_breaks=True)
|
227 |
with gr.Accordion("Solution", open=True, visible=False) as solution_acc:
|
|
|
244 |
with gr.Accordion("Feedback", open=True, visible=False) as feedback_acc:
|
245 |
feedback = gr.Markdown(elem_id=f"feedback", line_breaks=True)
|
246 |
|
247 |
+
# Event handlers
|
248 |
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
|
249 |
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
|
250 |
).success(
|
|
|
290 |
fn=llm.end_interview, inputs=[description, chat_history, interview_type_select], outputs=[feedback]
|
291 |
)
|
292 |
|
|
|
|
|
|
|
293 |
hidden_text = gr.State("")
|
294 |
is_transcribing = gr.State(False)
|
295 |
+
|
296 |
audio_input.stream(
|
297 |
stt.process_audio_chunk,
|
298 |
inputs=[audio_input, audio_buffer],
|
299 |
outputs=[audio_buffer, audio_to_transcribe],
|
300 |
show_progress="hidden",
|
301 |
).success(fn=lambda: True, outputs=[is_transcribing]).success(
|
302 |
+
fn=stt.transcribe_audio, inputs=[audio_to_transcribe, hidden_text], outputs=[hidden_text], show_progress="hidden"
|
303 |
).success(
|
304 |
+
fn=stt.add_to_chat, inputs=[hidden_text, chat], outputs=[chat], show_progress="hidden"
|
305 |
).success(
|
306 |
fn=lambda: False, outputs=[is_transcribing]
|
307 |
)
|
308 |
|
309 |
+
# We need to wait until the last chunk of audio is transcribed before sending the request
|
310 |
+
# I didn't find a native way of gradio to handle this, and used a workaround
|
311 |
+
WAIT_TIME = 5
|
312 |
+
TIME_STEP = 0.1
|
313 |
+
STEPS = int(WAIT_TIME / TIME_STEP)
|
314 |
+
|
315 |
+
stop_audio_recording = audio_input.stop_recording(fn=lambda x: time.sleep(TIME_STEP) if x else None, inputs=[is_transcribing])
|
316 |
+
for _ in range(STEPS - 1):
|
317 |
+
stop_audio_recording = stop_audio_recording.success(fn=lambda x: time.sleep(TIME_STEP) if x else None, inputs=[is_transcribing])
|
318 |
+
|
319 |
+
stop_audio_recording.success(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
fn=send_request_partial,
|
321 |
inputs=[code, previous_code, chat_history, chat],
|
322 |
outputs=[chat_history, chat, previous_code, audio_output],
|
323 |
+
).then(fn=lambda: (np.array([], dtype=np.int16), "", False), outputs=[audio_buffer, hidden_text, is_transcribing])
|
|
|
|
|
|
|
|
|
324 |
|
325 |
interview_type_select.change(
|
326 |
fn=lambda x: gr.update(choices=topic_lists[x], value=np.random.choice(topic_lists[x])),
|