interviewer / ui /coding.py
IliaLarchenko's picture
Added custom interview type
3165477
raw
history blame
12 kB
import gradio as gr
import numpy as np
import os
from itertools import chain
import time
from resources.data import fixed_messages, topic_lists, interview_types
from utils.ui import add_candidate_message, add_interviewer_message
from typing import List, Dict, Generator, Optional, Tuple
from functools import partial
from api.llm import LLMManager
from api.audio import TTSManager, STTManager
from docs.instruction import instruction
def send_request(
code: str,
previous_code: str,
chat_history: List[Dict[str, str]],
chat_display: List[List[Optional[str]]],
llm: LLMManager,
tts: Optional[TTSManager],
silent: Optional[bool] = False,
) -> Generator[Tuple[List[Dict[str, str]], List[List[Optional[str]]], str, bytes], None, None]:
"""
Send a request to the LLM and update the chat display and translate it to speech.
"""
# TODO: Find the way to simplify it and remove duplication in logic
if silent is None:
silent = os.getenv("SILENT", False)
if chat_display[-1][0] is None and code == previous_code:
yield chat_history, chat_display, code, b""
return
chat_history = llm.update_chat_history(code, previous_code, chat_history, chat_display)
original_len = len(chat_display)
chat_display.append([None, ""])
text_chunks = []
reply = llm.get_text(chat_history)
chat_history.append({"role": "assistant", "content": ""})
audio_generator = iter(())
has_text_item = True
has_audio_item = not silent
audio_created = 0
is_notes = False
while has_text_item or has_audio_item:
try:
text_chunk = next(reply)
text_chunks.append(text_chunk)
has_text_item = True
except StopIteration:
has_text_item = False
chat_history[-1]["content"] = "".join(text_chunks)
if silent:
audio_chunk = b""
else:
try:
audio_chunk = next(audio_generator)
has_audio_item = True
except StopIteration:
audio_chunk = b""
has_audio_item = False
if has_text_item and not is_notes:
last_message = chat_display[-1][1]
last_message += text_chunk
split_notes = last_message.split("#NOTES#")
if len(split_notes) > 1:
is_notes = True
last_message = split_notes[0]
split_messages = last_message.split("\n\n")
chat_display[-1][1] = split_messages[0]
for m in split_messages[1:]:
chat_display.append([None, m])
if not silent:
if len(chat_display) - original_len > audio_created + has_text_item:
audio_generator = chain(audio_generator, tts.read_text(chat_display[original_len + audio_created][1]))
audio_created += 1
has_audio_item = True
if chat_display and len(chat_display) > 1 and chat_display[-1][1] == "" and chat_display[-2][1]:
chat_display.pop()
yield chat_history, chat_display, code, audio_chunk
def change_code_area(interview_type):
if interview_type == "coding":
return gr.update(
label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
language="python",
)
elif interview_type == "sql":
return gr.update(
label="Please write your query here.",
language="sql",
)
else:
return gr.update(
label="Please write any notes for your solution here.",
language=None,
)
def get_problem_solving_ui(llm: LLMManager, tts: TTSManager, stt: STTManager, default_audio_params: Dict, audio_output):
send_request_partial = partial(send_request, llm=llm, tts=tts)
with gr.Tab("Interview", render=False, elem_id=f"tab") as problem_tab:
if os.getenv("IS_DEMO"):
gr.Markdown(instruction["demo"])
chat_history = gr.State([])
previous_code = gr.State("")
hi_markdown = gr.Markdown(
"<h2 style='text-align: center;'> Hi! I'm here to guide you through a practice session for your technical interview. Choose the interview settings to begin.</h2>\n"
)
with gr.Row() as init_acc:
with gr.Column(scale=3):
interview_type_select = gr.Dropdown(
show_label=False,
info="Type of the interview.",
choices=interview_types,
value="coding",
container=True,
allow_custom_value=False,
elem_id=f"interview_type_select",
scale=2,
)
difficulty_select = gr.Dropdown(
show_label=False,
info="Difficulty of the problem.",
choices=["Easy", "Medium", "Hard"],
value="Medium",
container=True,
allow_custom_value=True,
elem_id=f"difficulty_select",
scale=2,
)
topic_select = gr.Dropdown(
show_label=False,
info="Topic (you can type any value).",
choices=topic_lists[interview_type_select.value],
value=np.random.choice(topic_lists[interview_type_select.value]),
container=True,
allow_custom_value=True,
elem_id=f"topic_select",
scale=2,
)
with gr.Column(scale=4):
requirements = gr.Textbox(
label="Requirements",
show_label=False,
placeholder="Specify additional requirements if any.",
container=False,
lines=5,
elem_id=f"requirements",
)
with gr.Row():
terms_checkbox = gr.Checkbox(
label="",
container=False,
value=not os.getenv("IS_DEMO", False),
interactive=True,
elem_id=f"terms_checkbox",
min_width=20,
)
with gr.Column(scale=100):
gr.Markdown(
"#### I agree to the [terms and conditions](https://github.com/IliaLarchenko/Interviewer?tab=readme-ov-file#important-legal-and-compliance-information)"
)
start_btn = gr.Button("Generate a problem", elem_id=f"start_btn", interactive=not os.getenv("IS_DEMO", False))
with gr.Accordion("Problem statement", open=True, visible=False) as problem_acc:
description = gr.Markdown(elem_id=f"problem_description", line_breaks=True)
with gr.Accordion("Solution", open=True, visible=False) as solution_acc:
with gr.Row() as content:
with gr.Column(scale=2):
code = gr.Code(
label="Please write your code here.",
language="python",
lines=46,
elem_id=f"code",
)
with gr.Column(scale=1):
end_btn = gr.Button("Finish the interview", interactive=False, variant="stop", elem_id=f"end_btn")
chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, elem_id=f"chat")
# I need this message box only because chat component is flickering when I am updating it
# To be improved in the future
message = gr.Textbox(
label="Message",
show_label=False,
lines=5,
max_lines=5,
interactive=False,
container=False,
elem_id=f"message",
)
audio_input = gr.Audio(interactive=False, **default_audio_params, elem_id=f"audio_input")
audio_buffer = gr.State(np.array([], dtype=np.int16))
audio_to_transcribe = gr.State(np.array([], dtype=np.int16))
with gr.Accordion("Feedback", open=True, visible=False) as feedback_acc:
feedback = gr.Markdown(elem_id=f"feedback", line_breaks=True)
# Start button click action chain
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
).success(
fn=lambda: (
gr.update(visible=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(visible=False),
),
outputs=[init_acc, start_btn, terms_checkbox, interview_type_select, hi_markdown],
).success(
fn=lambda: (gr.update(visible=True)),
outputs=[problem_acc],
).success(
fn=llm.get_problem,
inputs=[requirements, difficulty_select, topic_select, interview_type_select],
outputs=[description],
scroll_to_output=True,
).success(
fn=llm.init_bot, inputs=[description, interview_type_select], outputs=[chat_history]
).success(
fn=lambda: (gr.update(visible=True), gr.update(interactive=True), gr.update(interactive=True)),
outputs=[solution_acc, end_btn, audio_input],
)
end_btn.click(fn=lambda x: add_candidate_message("Let's stop here.", x), inputs=[chat], outputs=[chat]).success(
fn=add_interviewer_message(fixed_messages["end"]),
inputs=[chat],
outputs=[chat],
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=lambda: (
gr.update(open=False),
gr.update(interactive=False),
gr.update(open=False),
gr.update(interactive=False),
),
outputs=[solution_acc, end_btn, problem_acc, audio_input],
).success(
fn=lambda: (gr.update(visible=True)),
outputs=[feedback_acc],
).success(
fn=llm.end_interview, inputs=[description, chat_history, interview_type_select], outputs=[feedback]
)
audio_input.stream(
stt.process_audio_chunk,
inputs=[audio_input, audio_buffer],
outputs=[audio_buffer, audio_to_transcribe],
show_progress="hidden",
).success(fn=stt.transcribe_audio, inputs=[audio_to_transcribe, message], outputs=[message], show_progress="hidden")
# TODO: find a way to remove delay
audio_input.stop_recording(fn=lambda: time.sleep(2)).success(
fn=add_candidate_message, inputs=[message, chat], outputs=[chat]
).success(
fn=send_request_partial,
inputs=[code, previous_code, chat_history, chat],
outputs=[chat_history, chat, previous_code, audio_output],
).success(
fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer]
).success(
lambda: "", outputs=[message]
)
interview_type_select.change(
fn=lambda x: gr.update(choices=topic_lists[x], value=np.random.choice(topic_lists[x])),
inputs=[interview_type_select],
outputs=[topic_select],
).success(fn=change_code_area, inputs=[interview_type_select], outputs=[code])
terms_checkbox.change(fn=lambda x: gr.update(interactive=x), inputs=[terms_checkbox], outputs=[start_btn])
return problem_tab