Spaces:
Sleeping
Sleeping
import io | |
import wave | |
import numpy as np | |
import requests | |
from openai import OpenAI | |
from utils.errors import APIError, AudioConversionError | |
from typing import List, Optional, Generator, Tuple | |
import webrtcvad | |
from transformers import pipeline | |
def detect_voice(audio: np.ndarray, sample_rate: int = 48000, frame_duration: int = 30) -> bool: | |
vad = webrtcvad.Vad() | |
vad.set_mode(3) # Aggressiveness mode: 0 (least aggressive) to 3 (most aggressive) | |
# Convert numpy array to 16-bit PCM bytes | |
audio_bytes = audio.tobytes() | |
num_samples_per_frame = int(sample_rate * frame_duration / 1000) | |
frames = [audio_bytes[i : i + num_samples_per_frame * 2] for i in range(0, len(audio_bytes), num_samples_per_frame * 2)] | |
count_speech = 0 | |
for frame in frames: | |
if len(frame) < num_samples_per_frame * 2: | |
continue | |
if vad.is_speech(frame, sample_rate): | |
count_speech += 1 | |
if count_speech > 6: | |
return True | |
return False | |
class STTManager: | |
def __init__(self, config): | |
self.SAMPLE_RATE = 48000 | |
self.CHUNK_LENGTH = 5 | |
self.STEP_LENGTH = 3 | |
self.MAX_RELIABILITY_CUTOFF = self.CHUNK_LENGTH - 1 | |
self.config = config | |
self.status = self.test_stt() | |
self.streaming = self.status | |
if config.stt.type == "HF_LOCAL": | |
self.pipe = pipeline("automatic-speech-recognition", model=config.stt.name) | |
def numpy_audio_to_bytes(self, audio_data: np.ndarray) -> bytes: | |
""" | |
Convert a numpy array of audio data to bytes. | |
:param audio_data: Numpy array containing audio data. | |
:return: Bytes representation of the audio data. | |
""" | |
num_channels = 1 | |
sampwidth = 2 | |
buffer = io.BytesIO() | |
try: | |
with wave.open(buffer, "wb") as wf: | |
wf.setnchannels(num_channels) | |
wf.setsampwidth(sampwidth) | |
wf.setframerate(self.SAMPLE_RATE) | |
wf.writeframes(audio_data.tobytes()) | |
except Exception as e: | |
raise AudioConversionError(f"Error converting numpy array to audio bytes: {e}") | |
return buffer.getvalue() | |
def process_audio_chunk(self, audio: Tuple[int, np.ndarray], audio_buffer: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Process streamed audio data to accumulate and transcribe with overlapping segments. | |
:param audio: Tuple containing the sample rate and audio data as numpy array. | |
:param audio_buffer: Current audio buffer as numpy array. | |
:return: Updated current audio buffer, audio for transcription | |
""" | |
has_voice = detect_voice(audio[1]) | |
ended = len(audio[1]) % 24000 != 0 | |
if has_voice: | |
audio_buffer = np.concatenate((audio_buffer, audio[1])) | |
is_short = len(audio_buffer) / self.SAMPLE_RATE < 1.0 | |
if is_short or (has_voice and not ended): | |
return audio_buffer, np.array([], dtype=np.int16) | |
return np.array([], dtype=np.int16), audio_buffer | |
def transcribe_audio(self, audio: np.ndarray, text: str = "") -> str: | |
if len(audio) < 500: | |
return text | |
else: | |
transcript = self.transcribe_numpy_array(audio, context=text) | |
return text + " " + transcript | |
def transcribe_numpy_array(self, audio: np.ndarray, context: Optional[str] = None) -> str: | |
""" | |
Convert speech to text from a full audio segment. | |
:param audio: Tuple containing the sample rate and audio data as numpy array. | |
:param context: Optional context for the transcription. | |
:return: Transcribed text. | |
""" | |
try: | |
if self.config.stt.type == "OPENAI_API": | |
audio_bytes = self.numpy_audio_to_bytes(audio) | |
data = ("temp.wav", audio_bytes, "audio/wav") | |
client = OpenAI(base_url=self.config.stt.url, api_key=self.config.stt.key) | |
transcription = client.audio.transcriptions.create( | |
model=self.config.stt.name, file=data, response_format="text", prompt=context | |
) | |
elif self.config.stt.type == "HF_API": | |
audio_bytes = self.numpy_audio_to_bytes(audio) | |
headers = {"Authorization": "Bearer " + self.config.stt.key} | |
response = requests.post(self.config.stt.url, headers=headers, data=audio_bytes) | |
if response.status_code != 200: | |
error_details = response.json().get("error", "No error message provided") | |
raise APIError("STT Error: HF API error", status_code=response.status_code, details=error_details) | |
transcription = response.json().get("text", None) | |
if transcription is None: | |
raise APIError("STT Error: No transcription returned by HF API") | |
elif self.config.stt.type == "HF_LOCAL": | |
result = self.pipe({"sampling_rate": self.SAMPLE_RATE, "raw": audio.astype(np.float32) / 32768.0}) | |
transcription = result["text"] | |
except APIError: | |
raise | |
except Exception as e: | |
raise APIError(f"STT Error: Unexpected error: {e}") | |
return transcription | |
def test_stt(self) -> bool: | |
""" | |
Test if the STT service is working correctly. | |
:return: True if the STT service is working, False otherwise. | |
""" | |
try: | |
self.transcribe_audio(np.zeros(10000)) | |
return True | |
except: | |
return False | |
class TTSManager: | |
def __init__(self, config): | |
self.config = config | |
self.status = self.test_tts(stream=False) | |
self.streaming = self.test_tts(stream=True) if self.status else False | |
def test_tts(self, stream) -> bool: | |
""" | |
Test if the TTS service is working correctly. | |
:return: True if the TTS service is working, False otherwise. | |
""" | |
try: | |
list(self.read_text("Handshake", stream=stream)) | |
return True | |
except: | |
return False | |
def read_text(self, text: str, stream: Optional[bool] = None) -> Generator[bytes, None, None]: | |
""" | |
Convert text to speech and return the audio bytes, optionally streaming the response. | |
:param text: Text to convert to speech. | |
:param stream: Whether to use streaming or not. | |
:return: Generator yielding chunks of audio bytes. | |
""" | |
if not text: | |
yield b"" | |
return | |
if stream is None: | |
stream = self.streaming | |
headers = {"Authorization": "Bearer " + self.config.tts.key} | |
data = {"model": self.config.tts.name, "input": text, "voice": "alloy", "response_format": "opus"} | |
try: | |
if not stream: | |
if self.config.tts.type == "OPENAI_API": | |
response = requests.post(self.config.tts.url + "/audio/speech", headers=headers, json=data) | |
elif self.config.tts.type == "HF_API": | |
response = requests.post(self.config.tts.url, headers=headers, json={"inputs": text}) | |
if response.status_code != 200: | |
error_details = response.json().get("error", "No error message provided") | |
raise APIError(f"TTS Error: {self.config.tts.type} error", status_code=response.status_code, details=error_details) | |
yield response.content | |
else: | |
if self.config.tts.type != "OPENAI_API": | |
raise APIError("TTS Error: Streaming not supported for this TTS type") | |
with requests.post(self.config.tts.url + "/audio/speech", headers=headers, json=data, stream=True) as response: | |
if response.status_code != 200: | |
error_details = response.json().get("error", "No error message provided") | |
raise APIError("TTS Error: OPENAI API error", status_code=response.status_code, details=error_details) | |
yield from response.iter_content(chunk_size=1024) | |
except APIError: | |
raise | |
except Exception as e: | |
raise APIError(f"TTS Error: Unexpected error: {e}") | |
def read_last_message(self, chat_history: List[List[Optional[str]]]) -> Generator[bytes, None, None]: | |
""" | |
Read the last message in the chat history and convert it to speech. | |
:param chat_history: List of chat messages. | |
:return: Generator yielding chunks of audio bytes. | |
""" | |
if len(chat_history) > 0 and chat_history[-1][1]: | |
yield from self.read_text(chat_history[-1][1]) | |