IliaLarchenko commited on
Commit
3efd956
β€’
1 Parent(s): d8b1533
Files changed (3) hide show
  1. src/app.py +9 -61
  2. src/utils.py +47 -0
  3. src/visuals.py +13 -1
src/app.py CHANGED
@@ -2,72 +2,20 @@ import os
2
  import streamlit as st
3
  import albumentations as A
4
 
5
- from utils import load_augmentations_config, get_arguments
 
 
 
 
 
 
6
  from visuals import (
7
- show_transform_control,
8
  select_image,
9
  show_credentials,
10
  show_docstring,
 
11
  )
12
 
13
-
14
- def get_placeholder_params(image):
15
- return {
16
- "image_width": image.shape[1],
17
- "image_height": image.shape[0],
18
- "image_half_width": int(image.shape[1] / 2),
19
- "image_half_height": int(image.shape[0] / 2),
20
- }
21
-
22
-
23
- def select_transformations(augmentations: dict, interface_type: str) -> list:
24
- # in the Simple mode you can choose only one transform
25
- if interface_type == "Simple":
26
- transform_names = [
27
- st.sidebar.selectbox(
28
- "Select a transformation:", sorted(list(augmentations.keys()))
29
- )
30
- ]
31
- # in the professional mode you can choose several transforms
32
- elif interface_type == "Professional":
33
- transform_names = [
34
- st.sidebar.selectbox(
35
- "Select transformation β„–1:", sorted(list(augmentations.keys()))
36
- )
37
- ]
38
- while transform_names[-1] != "None":
39
- transform_names.append(
40
- st.sidebar.selectbox(
41
- f"Select transformation β„–{len(transform_names) + 1}:",
42
- ["None"] + sorted(list(augmentations.keys())),
43
- )
44
- )
45
- transform_names = transform_names[:-1]
46
- return transform_names
47
-
48
-
49
- def get_transormations_params(transform_names: list) -> list:
50
- transforms = []
51
- for i, transform_name in enumerate(transform_names):
52
- # select the params values
53
- st.sidebar.subheader("Params of the " + transform_name)
54
- param_values = show_transform_control(augmentations[transform_name], i)
55
- transforms.append(getattr(A, transform_name)(**param_values))
56
- return transforms
57
-
58
-
59
- def show_random_params(data: dict, interface_type: str = "Professional"):
60
- """Shows random params used for transformation (from A.ReplayCompose)"""
61
- if interface_type == "Professional":
62
- st.subheader("Random params used")
63
- random_values = {}
64
- for applied_params in data["replay"]["transforms"]:
65
- random_values[
66
- applied_params["__class_fullname__"].split(".")[-1]
67
- ] = applied_params["params"]
68
- st.write(random_values)
69
-
70
-
71
  # TODO: refactor all the new code
72
 
73
  # get CLI params: the path to images and image width
@@ -100,7 +48,7 @@ else:
100
  transform_names = select_transformations(augmentations, interface_type)
101
 
102
  # get parameters for each transform
103
- transforms = get_transormations_params(transform_names)
104
 
105
  try:
106
  # apply the transformation to the image
 
2
  import streamlit as st
3
  import albumentations as A
4
 
5
+ from utils import (
6
+ load_augmentations_config,
7
+ get_arguments,
8
+ get_placeholder_params,
9
+ select_transformations,
10
+ show_random_params,
11
+ )
12
  from visuals import (
 
13
  select_image,
14
  show_credentials,
15
  show_docstring,
16
+ get_transormations_params,
17
  )
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  # TODO: refactor all the new code
20
 
21
  # get CLI params: the path to images and image width
 
48
  transform_names = select_transformations(augmentations, interface_type)
49
 
50
  # get parameters for each transform
51
+ transforms = get_transormations_params(transform_names, augmentations)
52
 
53
  try:
54
  # apply the transformation to the image
src/utils.py CHANGED
@@ -109,3 +109,50 @@ def get_params_string(param_values: dict) -> str:
109
  [k + "=" + str(param_values[k]) for k in param_values.keys()]
110
  )
111
  return params_string
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  [k + "=" + str(param_values[k]) for k in param_values.keys()]
110
  )
111
  return params_string
112
+
113
+
114
+ def get_placeholder_params(image):
115
+ return {
116
+ "image_width": image.shape[1],
117
+ "image_height": image.shape[0],
118
+ "image_half_width": int(image.shape[1] / 2),
119
+ "image_half_height": int(image.shape[0] / 2),
120
+ }
121
+
122
+
123
+ def select_transformations(augmentations: dict, interface_type: str) -> list:
124
+ # in the Simple mode you can choose only one transform
125
+ if interface_type == "Simple":
126
+ transform_names = [
127
+ st.sidebar.selectbox(
128
+ "Select a transformation:", sorted(list(augmentations.keys()))
129
+ )
130
+ ]
131
+ # in the professional mode you can choose several transforms
132
+ elif interface_type == "Professional":
133
+ transform_names = [
134
+ st.sidebar.selectbox(
135
+ "Select transformation β„–1:", sorted(list(augmentations.keys()))
136
+ )
137
+ ]
138
+ while transform_names[-1] != "None":
139
+ transform_names.append(
140
+ st.sidebar.selectbox(
141
+ f"Select transformation β„–{len(transform_names) + 1}:",
142
+ ["None"] + sorted(list(augmentations.keys())),
143
+ )
144
+ )
145
+ transform_names = transform_names[:-1]
146
+ return transform_names
147
+
148
+
149
+ def show_random_params(data: dict, interface_type: str = "Professional"):
150
+ """Shows random params used for transformation (from A.ReplayCompose)"""
151
+ if interface_type == "Professional":
152
+ st.subheader("Random params used")
153
+ random_values = {}
154
+ for applied_params in data["replay"]["transforms"]:
155
+ random_values[
156
+ applied_params["__class_fullname__"].split(".")[-1]
157
+ ] = applied_params["params"]
158
+ st.write(random_values)
src/visuals.py CHANGED
@@ -1,6 +1,8 @@
1
  import cv2
2
  import streamlit as st
3
 
 
 
4
  from control import param2func
5
  from utils import get_images_list, load_image, upload_image
6
 
@@ -35,7 +37,7 @@ def select_image(path_to_images: str, interface_type: str = "Simple"):
35
  if image_name != "Upload my image":
36
  try:
37
  image = load_image(image_name, path_to_images)
38
- return 1, image
39
  except cv2.error:
40
  return 1, 0
41
  else:
@@ -89,6 +91,16 @@ def show_credentials():
89
  )
90
 
91
 
 
 
 
 
 
 
 
 
 
 
92
  def show_docstring(obj_with_ds):
93
  st.markdown("* * *")
94
  st.subheader("Docstring for " + obj_with_ds.__class__.__name__)
 
1
  import cv2
2
  import streamlit as st
3
 
4
+ import albumentations as A
5
+
6
  from control import param2func
7
  from utils import get_images_list, load_image, upload_image
8
 
 
37
  if image_name != "Upload my image":
38
  try:
39
  image = load_image(image_name, path_to_images)
40
+ return 0, image
41
  except cv2.error:
42
  return 1, 0
43
  else:
 
91
  )
92
 
93
 
94
+ def get_transormations_params(transform_names: list, augmentations: dict) -> list:
95
+ transforms = []
96
+ for i, transform_name in enumerate(transform_names):
97
+ # select the params values
98
+ st.sidebar.subheader("Params of the " + transform_name)
99
+ param_values = show_transform_control(augmentations[transform_name], i)
100
+ transforms.append(getattr(A, transform_name)(**param_values))
101
+ return transforms
102
+
103
+
104
  def show_docstring(obj_with_ds):
105
  st.markdown("* * *")
106
  st.subheader("Docstring for " + obj_with_ds.__class__.__name__)