Ihssane123's picture
adding the app file
e01dd76
from transformers import pipeline
import gradio as gr
model_id = "Ihssane123/distilhubert-finetuned-gtzan"
pipe = pipeline("audio-classification", model=model_id)
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {}
for p in preds:
outputs[p["label"]] = p["score"]
return outputs
demo = gr.Interface(
fn=classify_audio, inputs=gr.Audio(type="filepath"), outputs=gr.Label()
)
demo = gr.Interface(
fn=classify_audio,
inputs=gr.Audio(type="filepath"),
outputs=gr.Label(),
title="Music Genre Classifier",
description="""<div style="text-align: center; margin-bottom: 10px">
<p style="font-size: 16px; color: #555; font-style: italic;">
This demo is based on the <span style="color: #007bff; font-weight: bold;"><a href="https://huggingface.co/learn/audio-course/en/chapter4/demo">Hugging Face audio course Unit 4</a></span>,
demonstrating a music genre classifier built with Gradio.
</p>
</div>"""
)
demo.launch(debug=True)