IhebJettPilot commited on
Commit
5b333be
1 Parent(s): 290e475

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -178
app.py DELETED
@@ -1,178 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import tensorflow as tf
4
- from tensorflow import keras
5
- import tensorflow_io as tfio
6
- from huggingface_hub import from_pretrained_keras
7
-
8
-
9
- model = from_pretrained_keras("keras-io/ctc_asr", compile=False)
10
-
11
- characters = [x for x in "abcdefghijklmnopqrstuvwxyz'?! "]
12
- # Mapping characters to integers
13
- char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="")
14
- # Mapping integers back to original characters
15
- num_to_char = keras.layers.StringLookup(
16
- vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True
17
- )
18
-
19
- # An integer scalar Tensor. The window length in samples.
20
- frame_length = 256
21
- # An integer scalar Tensor. The number of samples to step.
22
- frame_step = 160
23
- # An integer scalar Tensor. The size of the FFT to apply.
24
- # If not provided, uses the smallest power of 2 enclosing frame_length.
25
- fft_length = 384
26
-
27
- SAMPLE_RATE = 22050
28
-
29
-
30
- def decode_batch_predictions(pred):
31
- input_len = np.ones(pred.shape[0]) * pred.shape[1]
32
- # Use greedy search. For complex tasks, you can use beam search
33
- results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
34
- # Iterate over the results and get back the text
35
- output_text = []
36
- for result in results:
37
- result = tf.strings.reduce_join(num_to_char(result)).numpy().decode("utf-8")
38
- output_text.append(result)
39
- return output_text
40
-
41
-
42
- def load_16k_audio_wav(filename):
43
- # Read file content
44
- file_content = tf.io.read_file(filename)
45
-
46
- # Decode audio wave
47
- audio_wav, sample_rate = tf.audio.decode_wav(file_content, desired_channels=1)
48
- audio_wav = tf.squeeze(audio_wav, axis=-1)
49
- sample_rate = tf.cast(sample_rate, dtype=tf.int64)
50
-
51
- # Resample to 16k
52
- audio_wav = tfio.audio.resample(
53
- audio_wav, rate_in=sample_rate, rate_out=SAMPLE_RATE
54
- )
55
-
56
- return audio_wav
57
-
58
-
59
- def mic_to_tensor(recorded_audio_file):
60
- sample_rate, audio = recorded_audio_file
61
-
62
- audio_wav = tf.constant(audio, dtype=tf.float32)
63
- if tf.rank(audio_wav) > 1:
64
- audio_wav = tf.reduce_mean(audio_wav, axis=1)
65
- audio_wav = tfio.audio.resample(
66
- audio_wav, rate_in=sample_rate, rate_out=SAMPLE_RATE
67
- )
68
-
69
- audio_wav = tf.divide(audio_wav, tf.reduce_max(tf.abs(audio_wav)))
70
-
71
- return audio_wav
72
-
73
-
74
- def tensor_to_predictions(audio_tensor):
75
- # 3. Change type to float
76
- audio_tensor = tf.cast(audio_tensor, tf.float32)
77
-
78
- # 4. Get the spectrogram
79
- spectrogram = tf.signal.stft(
80
- audio_tensor,
81
- frame_length=frame_length,
82
- frame_step=frame_step,
83
- fft_length=fft_length,
84
- )
85
-
86
- # 5. We only need the magnitude, which can be derived by applying tf.abs
87
- spectrogram = tf.abs(spectrogram)
88
- spectrogram = tf.math.pow(spectrogram, 0.5)
89
-
90
- # 6. normalisation
91
- means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)
92
- stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)
93
- spectrogram = (spectrogram - means) / (stddevs + 1e-10)
94
-
95
- spectrogram = tf.expand_dims(spectrogram, axis=0)
96
-
97
- batch_predictions = model.predict(spectrogram)
98
- batch_predictions = decode_batch_predictions(batch_predictions)
99
- return batch_predictions
100
-
101
-
102
- def clear_inputs_and_outputs():
103
- return [None, None, None]
104
-
105
-
106
- def predict(recorded_audio_file, uploaded_audio_file):
107
- # 1. Read wav file
108
- if recorded_audio_file:
109
- audio_tensor = mic_to_tensor(recorded_audio_file)
110
- else:
111
- audio_tensor = load_16k_audio_wav(uploaded_audio_file)
112
-
113
- prediction = tensor_to_predictions(audio_tensor)[0]
114
- return prediction
115
-
116
-
117
- # gr.Interface(
118
- # infer,
119
- # inputs=gr.Audio(source="microphone", type="filepath"),
120
- # outputs=gr.Textbox(lines=5, label="Input Text"),
121
- # #title=title,
122
- # #description=description,
123
- # #article=article,
124
- # #examples=examples,
125
- # enable_queue=True,
126
- # ).launch(debug=True)
127
-
128
- # Main function
129
- if __name__ == "__main__":
130
- demo = gr.Blocks()
131
-
132
- with demo:
133
- gr.Markdown(
134
- """
135
- <center><h1>Automatic Speech Recognition using CTC</h1></center> \
136
- This space is a demo of Automatic Speech Recognition using Keras trained on LJSpeech dataset.<br> \
137
- In this space, you can record your voice or upload a wav file and the model will predict the words spoken in English<br><br>
138
- """
139
- )
140
- with gr.Row():
141
- ## Input
142
- with gr.Column():
143
- mic_input = gr.Audio(source="microphone", label="Record your own voice")
144
- upl_input = gr.Audio(
145
- source="upload", type="filepath", label="Upload a wav file"
146
- )
147
-
148
- with gr.Row():
149
- clr_btn = gr.Button(value="Clear", variant="secondary")
150
- prd_btn = gr.Button(value="Predict")
151
-
152
- # Outputs
153
- with gr.Column():
154
- lbl_output = gr.Label(label="Text")
155
-
156
- # Credits
157
- with gr.Row():
158
- gr.Markdown(
159
- """
160
- <h4>Credits</h4>
161
- Author: <a href="https://twitter.com/anuragcomm"> Anurag Singh</a>.<br>
162
- Based on the following Keras example <a href="https://keras.io/examples/audio/ctc_asr">Automatic Speech Recognition using CTC</a> by <a href="https://rbouadjenek.github.io/">Mohamed Reda Bouadjenek</a> and <a href="https://www.linkedin.com/in/parkerhuynh/">Ngoc Dung Huynh</a><br>
163
- Check out the model <a href="https://huggingface.co/keras-io/ctc_asr">here</a>
164
- """
165
- )
166
-
167
- clr_btn.click(
168
- fn=clear_inputs_and_outputs,
169
- inputs=[],
170
- outputs=[mic_input, upl_input, lbl_output],
171
- )
172
- prd_btn.click(
173
- fn=predict,
174
- inputs=[mic_input, upl_input],
175
- outputs=[lbl_output],
176
- )
177
-
178
- demo.launch(debug=True)