Commit
路
4dc5014
1
Parent(s):
bca6019
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_fastai
|
2 |
+
import gradio as gr
|
3 |
+
from fastai.vision.all import *
|
4 |
+
import PIL
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
|
7 |
+
##Extras por si pudiera reconstruir la imagen en HF tambi茅n
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
def extract_subimages(image : np.ndarray, wwidth, wheight, overlap_fraction):
|
13 |
+
"""
|
14 |
+
Extracts subimages of the input image using a moving window of size (wwidth, wheight)
|
15 |
+
with the specified overlap fraction. Returns a tuple (subimages, coords) where subimages
|
16 |
+
is a list of subimages and coords is a list of tuples (x, y) indicating the top left corner
|
17 |
+
coordinates of each subimage in the input image.
|
18 |
+
"""
|
19 |
+
subimages = []
|
20 |
+
coords = []
|
21 |
+
height, width, channels = image.shape
|
22 |
+
if channels > 3:
|
23 |
+
image = image[:,:,0:3]
|
24 |
+
channels = 3
|
25 |
+
overlap = int(max(0, min(overlap_fraction, 1)) * min(wwidth, wheight))
|
26 |
+
y = 0
|
27 |
+
while y + wheight <= height:
|
28 |
+
x = 0
|
29 |
+
while x + wwidth <= width:
|
30 |
+
subimage = image[y:y+wheight, x:x+wwidth, :]
|
31 |
+
subimages.append(subimage)
|
32 |
+
coords.append((x, y))
|
33 |
+
x += wwidth - overlap
|
34 |
+
y += wheight - overlap
|
35 |
+
if y < height:
|
36 |
+
y = height - wheight
|
37 |
+
x = 0
|
38 |
+
while x + wwidth <= width:
|
39 |
+
subimage = image[y:y+wheight, x:x+wwidth, :]
|
40 |
+
subimages.append(subimage)
|
41 |
+
coords.append((x, y))
|
42 |
+
x += wwidth - overlap
|
43 |
+
if x < width:
|
44 |
+
x = width - wwidth
|
45 |
+
subimage = image[y:y+wheight, x:x+wwidth, :]
|
46 |
+
subimages.append(subimage)
|
47 |
+
coords.append((x, y))
|
48 |
+
if x < width:
|
49 |
+
x = width - wwidth
|
50 |
+
y = 0
|
51 |
+
while y + wheight <= height:
|
52 |
+
subimage = image[y:y+wheight, x:x+wwidth, :]
|
53 |
+
subimages.append(subimage)
|
54 |
+
coords.append((x, y))
|
55 |
+
y += wheight - overlap
|
56 |
+
if y < height:
|
57 |
+
y = height - wheight
|
58 |
+
subimage = image[y:y+wheight, x:x+wwidth, :]
|
59 |
+
subimages.append(subimage)
|
60 |
+
coords.append((x, y))
|
61 |
+
return subimages, coords
|
62 |
+
|
63 |
+
# Si no hay archivos tif (labels) no se tratan, no hace falta considerarlo
|
64 |
+
def generate_and_save_subimages(path, output_dir_images, output_dir_labels = None):
|
65 |
+
if output_dir_labels:
|
66 |
+
if not os.path.exists(output_dir_labels):
|
67 |
+
os.makedirs(output_dir_labels)
|
68 |
+
|
69 |
+
if not os.path.exists(output_dir_images):
|
70 |
+
os.makedirs(output_dir_images)
|
71 |
+
|
72 |
+
for filename in os.listdir(path):
|
73 |
+
if filename.endswith(".png") or filename.endswith(".tif"):
|
74 |
+
filepath = os.path.join(path, filename)
|
75 |
+
image = cv2.imread(filepath)
|
76 |
+
subimages, coords = extract_subimages(image, 400, 400, 0.66)
|
77 |
+
for i, subimage in enumerate(subimages):
|
78 |
+
if filename.endswith(".png"):
|
79 |
+
output_filename = os.path.join(output_dir_images, f"{filename.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.png")
|
80 |
+
cv2.imwrite(output_filename, subimage)
|
81 |
+
else:
|
82 |
+
if output_dir_labels:
|
83 |
+
output_filename = os.path.join(output_dir_labels, f"{filename.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.tif")
|
84 |
+
cv2.imwrite(output_filename, subimage)
|
85 |
+
|
86 |
+
def generate_and_save_subimages_nolabel(path, output_dir_images, olverlap=0.0, imagesformat="png", split_in_dirs=True):
|
87 |
+
for entry in os.scandir(path):
|
88 |
+
if entry.is_file() and entry.name.lower().endswith(imagesformat):
|
89 |
+
filepath = entry.path
|
90 |
+
gss_single(filepath, output_dir_images, olverlap, imagesformat, split_in_dirs)
|
91 |
+
|
92 |
+
def gss_single(filepath, output_dir_images, olverlap=0.0, imagesformat="png", split_in_dirs=True):
|
93 |
+
image = cv2.imread(filepath)
|
94 |
+
|
95 |
+
if split_in_dirs:
|
96 |
+
dir_this_image = Path(output_dir_images)/filepath.rsplit('.', 1)[0]
|
97 |
+
os.makedirs(dir_this_image, exist_ok=True)
|
98 |
+
else:
|
99 |
+
os.makedirs(output_dir_images, exist_ok=True)
|
100 |
+
|
101 |
+
subimages, coords = extract_subimages(image, 400, 400, olverlap)
|
102 |
+
for i, subimage in enumerate(subimages):
|
103 |
+
if split_in_dirs:
|
104 |
+
output_filename = os.path.join(dir_this_image, f"{filepath.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.png")
|
105 |
+
else:
|
106 |
+
output_filename = os.path.join(output_dir_images, f"{filepath.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.png")
|
107 |
+
cv2.imwrite(output_filename, subimage)
|
108 |
+
|
109 |
+
def split_windows_in_folders(input_images_folder, output_images_folder):
|
110 |
+
for filename in os.listdir(input_images_folder):
|
111 |
+
dir_this_image = Path(output_images_folder)/filename.rsplit('.', 1)[0]
|
112 |
+
os.makedirs(dir_this_image, exist_ok=True)
|
113 |
+
if filename.endswith(".png"):
|
114 |
+
print(str(dir_this_image))
|
115 |
+
filepath = os.path.join(path, filename)
|
116 |
+
image = cv2.imread(filepath)
|
117 |
+
subimages, coords = extract_subimages(image, 400, 400, 0)
|
118 |
+
for i, subimage in enumerate(subimages):
|
119 |
+
output_filename = os.path.join(dir_this_image, f"{filename.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.png")
|
120 |
+
cv2.imwrite(output_filename, subimage)
|
121 |
+
|
122 |
+
|
123 |
+
def subimages_from_directory(directorio):
|
124 |
+
# Define el directorio a recorrer
|
125 |
+
directorio = directorio
|
126 |
+
|
127 |
+
# Define la expresi贸n regular para buscar los n煤meros X e Y en el nombre de archivo
|
128 |
+
patron = re.compile(r"(.*)_(\d+)_(\d+)\.(png|jpg|tif)")
|
129 |
+
|
130 |
+
windowlist = []
|
131 |
+
coords = []
|
132 |
+
|
133 |
+
# Recorre el directorio en busca de im谩genes
|
134 |
+
for filename in os.listdir(directorio):
|
135 |
+
match = patron.search(filename)
|
136 |
+
if match:
|
137 |
+
origname = match.group(1)
|
138 |
+
x = int(match.group(2))
|
139 |
+
y = int(match.group(3))
|
140 |
+
#print(f"El archivo {filename} tiene los n煤meros X={x} e Y={y}")
|
141 |
+
img = cv2.imread(os.path.join(directorio, filename))
|
142 |
+
windowlist.append(img)
|
143 |
+
coords.append((x, y))
|
144 |
+
|
145 |
+
# Ordena las listas por coordenadas X e Y
|
146 |
+
windowlist, coords = zip(*sorted(zip(windowlist, coords), key=lambda pair: (pair[1][0], pair[1][1])))
|
147 |
+
wh, ww, chan = windowlist[0].shape
|
148 |
+
origsize = tuple(elem1 + elem2 for elem1, elem2 in zip(coords[-1], (wh,ww)))
|
149 |
+
|
150 |
+
return windowlist, coords, wh, ww, chan, origsize
|
151 |
+
|
152 |
+
def subimages_onlypath(directorio):
|
153 |
+
# Define el directorio a recorrer
|
154 |
+
directorio = directorio
|
155 |
+
pathlist = []
|
156 |
+
|
157 |
+
patron = re.compile(r"(.*)_(\d+)_(\d+)\.(png|jpg|tif)")
|
158 |
+
|
159 |
+
for filename in os.listdir(directorio):
|
160 |
+
match = patron.search(filename)
|
161 |
+
if match:
|
162 |
+
pathlist.append(os.path.join(directorio, filename))
|
163 |
+
|
164 |
+
return pathlist
|
165 |
+
|
166 |
+
def ReconstructFromMW(windowlist, coords, wh, ww, chan, origsize):
|
167 |
+
canvas = np.zeros((origsize[1], origsize[0], chan), dtype=np.uint8)
|
168 |
+
for idx, window in enumerate(windowlist):
|
169 |
+
canvas[coords[idx][1]:coords[idx][1]+wh, coords[idx][0]:coords[idx][0]+ww, :] = window
|
170 |
+
return canvas
|
171 |
+
|
172 |
+
def get_list_tp(path):
|
173 |
+
list_to_process = [] # Inicializar la lista que contendr谩 los nombres de los subdirectorios
|
174 |
+
list_names = []
|
175 |
+
# Recorrer los elementos del directorio
|
176 |
+
for element in os.scandir(path):
|
177 |
+
# Verificar si el elemento es un directorio
|
178 |
+
if element.is_dir():
|
179 |
+
# Agregar el nombre del subdirectorio a la lista
|
180 |
+
windowlist, coords, wh, ww, chan, origsize = subimages_from_directory(element)
|
181 |
+
list_to_process.append(ReconstructFromMW(windowlist, coords, wh, ww, chan, origsize))
|
182 |
+
list_names.append(element.name)
|
183 |
+
return list_to_process, list_names
|
184 |
+
|
185 |
+
def get_paths_tp(path):
|
186 |
+
list_to_process = [] # Inicializar la lista que contendr谩 los nombres de los subdirectorios
|
187 |
+
# Recorrer los elementos del directorio
|
188 |
+
for element in os.scandir(path):
|
189 |
+
# Verificar si el elemento es un directorio
|
190 |
+
if element.is_dir():
|
191 |
+
# Agregar el nombre del subdirectorio a la lista
|
192 |
+
list_to_process.append(subimages_onlypath(element))
|
193 |
+
return list_to_process
|
194 |
+
|
195 |
+
def process_multifolder(process_folders, result_folder):
|
196 |
+
for folder in process_folders:
|
197 |
+
folname = os.path.basename(os.path.dirname(folder[0]))
|
198 |
+
destname = Path(result_folder)/folname
|
199 |
+
os.makedirs(destname, exist_ok=True)
|
200 |
+
for subimagepath in folder:
|
201 |
+
img = PIL.Image.open(subimagepath)
|
202 |
+
image = transforms.Resize((400,400))(img)
|
203 |
+
tensor = transform_image(image=image)
|
204 |
+
with torch.no_grad():
|
205 |
+
outputs = model(tensor)
|
206 |
+
outputs = torch.argmax(outputs,1)
|
207 |
+
mask = np.array(outputs.cpu())
|
208 |
+
mask[mask==1]=255
|
209 |
+
mask=np.reshape(mask,(400,400))
|
210 |
+
mask_img = Image.fromarray(mask.astype('uint8'))
|
211 |
+
|
212 |
+
filename = os.path.basename(subimagepath)
|
213 |
+
new_image_path = os.path.join(result_folder, folname, filename)
|
214 |
+
mask_img.save(new_image_path)
|
215 |
+
|
216 |
+
def recombine_windows(results_folder_w, result_f_rec):
|
217 |
+
imgs, nombres = get_list_tp(results_folder_w)
|
218 |
+
os.makedirs(result_f_rec, exist_ok=True)
|
219 |
+
|
220 |
+
for idx, image in enumerate(imgs):
|
221 |
+
img = Image.fromarray(image)
|
222 |
+
new_image_path = os.path.join(result_f_rec, nombres[idx] + '.tif')
|
223 |
+
img.save(new_image_path, compression='tiff_lzw')
|
224 |
+
return new_image_path
|
225 |
+
|
226 |
+
def process_single_image(single_image_path, base_f, pro_f, rsw_f, rsd_f):
|
227 |
+
gss_single(single_image_path, pro_f, 0, "tif", True)
|
228 |
+
process_multifolder(get_paths_tp(pro_f),rsw_f)
|
229 |
+
pt = recombine_windows(rsw_f,rsd_f)
|
230 |
+
shutil.rmtree(pro_f)
|
231 |
+
shutil.rmtree(rsw_f)
|
232 |
+
#copiar_info_georref(single_image_path, pt)
|
233 |
+
return pt
|
234 |
+
|
235 |
+
# from osgeo import gdal, osr
|
236 |
+
|
237 |
+
# def copiar_info_georref(entrada, salida):
|
238 |
+
# try:
|
239 |
+
# # Abrir el archivo GeoTIFF original
|
240 |
+
# original_dataset = gdal.Open(entrada)
|
241 |
+
|
242 |
+
# # Obtener la informaci贸n de georreferenciaci贸n del archivo original
|
243 |
+
# original_projection = original_dataset.GetProjection()
|
244 |
+
# original_geotransform = original_dataset.GetGeoTransform()
|
245 |
+
|
246 |
+
# # Abrir la imagen resultado
|
247 |
+
# result_dataset = gdal.Open(salida, gdal.GA_Update)
|
248 |
+
|
249 |
+
# # Copiar la informaci贸n de georreferenciaci贸n del archivo original a la imagen resultado
|
250 |
+
# result_dataset.SetProjection(original_projection)
|
251 |
+
# result_dataset.SetGeoTransform(original_geotransform)
|
252 |
+
|
253 |
+
# # Cerrar los archivos
|
254 |
+
# original_dataset = None
|
255 |
+
# result_dataset = None
|
256 |
+
|
257 |
+
# except Exception as e:
|
258 |
+
# print("Error: ", e)
|
259 |
+
|
260 |
+
###FIN de extras
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
#repo_id = "Ignaciobfp/segmentacion-dron-marras"
|
265 |
+
#learner = from_pretrained_fastai(repo_id)
|
266 |
+
|
267 |
+
device = torch.device("cpu")
|
268 |
+
#model = learner.model
|
269 |
+
model = torch.jit.load("modelo_marras.pth")
|
270 |
+
model = model.cpu()
|
271 |
+
|
272 |
+
def transform_image(image):
|
273 |
+
my_transforms = transforms.Compose([transforms.ToTensor(),
|
274 |
+
transforms.Normalize(
|
275 |
+
[0.485, 0.456, 0.406],
|
276 |
+
[0.229, 0.224, 0.225])])
|
277 |
+
image_aux = image
|
278 |
+
return my_transforms(image_aux).unsqueeze(0).to(device)
|
279 |
+
|
280 |
+
|
281 |
+
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
282 |
+
def predict(img):
|
283 |
+
img_pil = PIL.Image.fromarray(img, 'RGB')
|
284 |
+
image = transforms.Resize((400,400))(img_pil)
|
285 |
+
tensor = transform_image(image=image)
|
286 |
+
model.to(device)
|
287 |
+
with torch.no_grad():
|
288 |
+
outputs = model(tensor)
|
289 |
+
outputs = torch.argmax(outputs,1)
|
290 |
+
mask = np.array(outputs.cpu())
|
291 |
+
mask[mask==1]=255
|
292 |
+
mask=np.reshape(mask,(400,400))
|
293 |
+
return Image.fromarray(mask.astype('uint8'))
|
294 |
+
|
295 |
+
def predict_full(img):
|
296 |
+
single_image_path = "tmp.tif"
|
297 |
+
base_f = "."
|
298 |
+
pro_f = "processing"
|
299 |
+
rsw_f = "results_windows"
|
300 |
+
rsd_f = "results_together"
|
301 |
+
destpath = process_single_image(single_image_path, base_f, pro_f, rsw_f, rsd_f)
|
302 |
+
im = Image.open(destpath)
|
303 |
+
return im
|
304 |
+
|
305 |
+
# Creamos la interfaz y la lanzamos.
|
306 |
+
gr.Interface(fn=predict_full, inputs=gr.inputs.Image(), outputs=gr.outputs.Image(type="pil")).launch(share=False)
|
307 |
+
|
308 |
+
|